解码肿瘤微环境:单细胞测序和空间转录组学的见解和新靶点。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shriya Pattabiram, Prakash Gangadaran, Sanjana Dhayalan, Gargii Chatterjee, Danyal Reyaz, Kruthika Prakash, Raksa Arun, Ramya Lakshmi Rajendran, Byeong-Cheol Ahn, Kandasamy Nagarajan Aruljothi
{"title":"解码肿瘤微环境:单细胞测序和空间转录组学的见解和新靶点。","authors":"Shriya Pattabiram, Prakash Gangadaran, Sanjana Dhayalan, Gargii Chatterjee, Danyal Reyaz, Kruthika Prakash, Raksa Arun, Ramya Lakshmi Rajendran, Byeong-Cheol Ahn, Kandasamy Nagarajan Aruljothi","doi":"10.3390/cimb47090730","DOIUrl":null,"url":null,"abstract":"<p><p>The field of oncology has been extensively studied to design more effective and efficient treatments. This review explores the advanced techniques that are transforming our comprehension of cancer and its constituents. Specifically, it highlights the signaling pathways that drive tumor progression, angiogenesis, and resistance to therapy, as well as the modern approaches used to identify and characterize these pathways within the tumor microenvironment (TME). Key pathways discussed in this review include vascular endothelial growth factor (VEGF), programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and various extracellular matrix (ECM) pathways. Conventional methods of diagnosis have yielded sufficient knowledge but have failed to reveal the heterogeneity that exists within the TME, resulting in gaps in our understanding of the cellular interaction and spatial dynamics. Single-cell sequencing (SCS) and spatial transcriptomics (ST) are effective tools that can enable the dissection of the TME with the resolution capacity of a single cell. SCS allows the capture of the unique genetic and transcriptomic profiles of individual cells along with rare cell types and new therapeutic targets. ST complements this by providing a spatial map of gene expression, showing the gene expression profiles within the tumor tissue at specific sites with good accuracy. By mapping gene expression patterns at a single cell level and correlating them with the spatial locations, researchers can uncover the intricate networks and microenvironmental influences that contribute to tumor heterogeneity.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468534/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding the Tumor Microenvironment: Insights and New Targets from Single-Cell Sequencing and Spatial Transcriptomics.\",\"authors\":\"Shriya Pattabiram, Prakash Gangadaran, Sanjana Dhayalan, Gargii Chatterjee, Danyal Reyaz, Kruthika Prakash, Raksa Arun, Ramya Lakshmi Rajendran, Byeong-Cheol Ahn, Kandasamy Nagarajan Aruljothi\",\"doi\":\"10.3390/cimb47090730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of oncology has been extensively studied to design more effective and efficient treatments. This review explores the advanced techniques that are transforming our comprehension of cancer and its constituents. Specifically, it highlights the signaling pathways that drive tumor progression, angiogenesis, and resistance to therapy, as well as the modern approaches used to identify and characterize these pathways within the tumor microenvironment (TME). Key pathways discussed in this review include vascular endothelial growth factor (VEGF), programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and various extracellular matrix (ECM) pathways. Conventional methods of diagnosis have yielded sufficient knowledge but have failed to reveal the heterogeneity that exists within the TME, resulting in gaps in our understanding of the cellular interaction and spatial dynamics. Single-cell sequencing (SCS) and spatial transcriptomics (ST) are effective tools that can enable the dissection of the TME with the resolution capacity of a single cell. SCS allows the capture of the unique genetic and transcriptomic profiles of individual cells along with rare cell types and new therapeutic targets. ST complements this by providing a spatial map of gene expression, showing the gene expression profiles within the tumor tissue at specific sites with good accuracy. By mapping gene expression patterns at a single cell level and correlating them with the spatial locations, researchers can uncover the intricate networks and microenvironmental influences that contribute to tumor heterogeneity.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468534/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb47090730\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090730","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤领域已被广泛研究,以设计更有效和高效的治疗方法。这篇综述探讨了正在改变我们对癌症及其成分的理解的先进技术。具体来说,它强调了驱动肿瘤进展、血管生成和治疗抵抗的信号通路,以及用于识别和表征肿瘤微环境(TME)中这些通路的现代方法。本文讨论的主要途径包括血管内皮生长因子(VEGF)、程序性细胞死亡蛋白1/程序性细胞死亡配体1 (PD-1/PD-L1)、细胞毒性t淋巴细胞相关蛋白4 (CTLA-4)和各种细胞外基质(ECM)途径。传统的诊断方法已经产生了足够的知识,但未能揭示存在于TME内的异质性,导致我们对细胞相互作用和空间动力学的理解存在空白。单细胞测序(SCS)和空间转录组学(ST)是一种有效的工具,可以使TME的解剖具有单细胞的分辨率能力。SCS允许捕获单个细胞的独特遗传和转录组谱以及罕见的细胞类型和新的治疗靶点。ST通过提供基因表达的空间图来补充这一点,以良好的准确性显示肿瘤组织中特定部位的基因表达谱。通过绘制单细胞水平的基因表达模式并将其与空间位置联系起来,研究人员可以揭示导致肿瘤异质性的复杂网络和微环境影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoding the Tumor Microenvironment: Insights and New Targets from Single-Cell Sequencing and Spatial Transcriptomics.

Decoding the Tumor Microenvironment: Insights and New Targets from Single-Cell Sequencing and Spatial Transcriptomics.

Decoding the Tumor Microenvironment: Insights and New Targets from Single-Cell Sequencing and Spatial Transcriptomics.

Decoding the Tumor Microenvironment: Insights and New Targets from Single-Cell Sequencing and Spatial Transcriptomics.

The field of oncology has been extensively studied to design more effective and efficient treatments. This review explores the advanced techniques that are transforming our comprehension of cancer and its constituents. Specifically, it highlights the signaling pathways that drive tumor progression, angiogenesis, and resistance to therapy, as well as the modern approaches used to identify and characterize these pathways within the tumor microenvironment (TME). Key pathways discussed in this review include vascular endothelial growth factor (VEGF), programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and various extracellular matrix (ECM) pathways. Conventional methods of diagnosis have yielded sufficient knowledge but have failed to reveal the heterogeneity that exists within the TME, resulting in gaps in our understanding of the cellular interaction and spatial dynamics. Single-cell sequencing (SCS) and spatial transcriptomics (ST) are effective tools that can enable the dissection of the TME with the resolution capacity of a single cell. SCS allows the capture of the unique genetic and transcriptomic profiles of individual cells along with rare cell types and new therapeutic targets. ST complements this by providing a spatial map of gene expression, showing the gene expression profiles within the tumor tissue at specific sites with good accuracy. By mapping gene expression patterns at a single cell level and correlating them with the spatial locations, researchers can uncover the intricate networks and microenvironmental influences that contribute to tumor heterogeneity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Issues in Molecular Biology
Current Issues in Molecular Biology 生物-生化研究方法
CiteScore
2.90
自引率
3.20%
发文量
380
审稿时长
>12 weeks
期刊介绍: Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信