Taylor S Mills, Marlon Arnone, Elsa Görsch, Simone Poeschel, Stefan Winter, Jessica Kuebler, Lucca M Kimmich, Florian A Büttner, Jan Weller, Saskia S Rudat, Lucas Mix, Jan C Schroeder, Anna M Paczulla Stanger, Matthias Schwab, Claudia Lengerke
{"title":"MRC2表达调节急性髓系白血病干细胞的代谢。","authors":"Taylor S Mills, Marlon Arnone, Elsa Görsch, Simone Poeschel, Stefan Winter, Jessica Kuebler, Lucca M Kimmich, Florian A Büttner, Jan Weller, Saskia S Rudat, Lucas Mix, Jan C Schroeder, Anna M Paczulla Stanger, Matthias Schwab, Claudia Lengerke","doi":"10.1016/j.canlet.2025.218068","DOIUrl":null,"url":null,"abstract":"<p><p>Leukemic stem cells (LSC) are well recognized for their essential roles in acute myeloid leukemia (AML) initiation and relapse. LSC can be distinguished from non-LSC AML cells by the expression of specific cell surface markers, but there is considerable phenotypic heterogeneity among LSC in AML. Here, using primary patient samples, we report that mannose receptor C-type 2 (MRC2) can be used to enrich for LSC across various AML subtypes. When compared to MRC2- AML cells isolated from the same patient samples, MRC2+ leukemic subpopulations show increased in vitro clonogenic capacity, a stemness transcriptomic signature, and enhanced leukemic capacity in mouse xenograft models. Further, we find that MRC2 is functional on AML cells, and enables their robust uptake of collagen, which supports their glycolytic metabolism. In sum these data highlight the use of functional surface markers to distinguish LSC in AML, and how they can yield insight into their unique characteristics.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"218068"},"PeriodicalIF":10.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRC2 expression modulates metabolism in acute myeloid leukemia stem cells.\",\"authors\":\"Taylor S Mills, Marlon Arnone, Elsa Görsch, Simone Poeschel, Stefan Winter, Jessica Kuebler, Lucca M Kimmich, Florian A Büttner, Jan Weller, Saskia S Rudat, Lucas Mix, Jan C Schroeder, Anna M Paczulla Stanger, Matthias Schwab, Claudia Lengerke\",\"doi\":\"10.1016/j.canlet.2025.218068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leukemic stem cells (LSC) are well recognized for their essential roles in acute myeloid leukemia (AML) initiation and relapse. LSC can be distinguished from non-LSC AML cells by the expression of specific cell surface markers, but there is considerable phenotypic heterogeneity among LSC in AML. Here, using primary patient samples, we report that mannose receptor C-type 2 (MRC2) can be used to enrich for LSC across various AML subtypes. When compared to MRC2- AML cells isolated from the same patient samples, MRC2+ leukemic subpopulations show increased in vitro clonogenic capacity, a stemness transcriptomic signature, and enhanced leukemic capacity in mouse xenograft models. Further, we find that MRC2 is functional on AML cells, and enables their robust uptake of collagen, which supports their glycolytic metabolism. In sum these data highlight the use of functional surface markers to distinguish LSC in AML, and how they can yield insight into their unique characteristics.</p>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\" \",\"pages\":\"218068\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.canlet.2025.218068\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.218068","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
MRC2 expression modulates metabolism in acute myeloid leukemia stem cells.
Leukemic stem cells (LSC) are well recognized for their essential roles in acute myeloid leukemia (AML) initiation and relapse. LSC can be distinguished from non-LSC AML cells by the expression of specific cell surface markers, but there is considerable phenotypic heterogeneity among LSC in AML. Here, using primary patient samples, we report that mannose receptor C-type 2 (MRC2) can be used to enrich for LSC across various AML subtypes. When compared to MRC2- AML cells isolated from the same patient samples, MRC2+ leukemic subpopulations show increased in vitro clonogenic capacity, a stemness transcriptomic signature, and enhanced leukemic capacity in mouse xenograft models. Further, we find that MRC2 is functional on AML cells, and enables their robust uptake of collagen, which supports their glycolytic metabolism. In sum these data highlight the use of functional surface markers to distinguish LSC in AML, and how they can yield insight into their unique characteristics.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.