Cassandra J Hatzipantelis, Lindsay P Cameron, Min Liu, Seona D Patel, Hannah N Saeger, Anna M M Vernier, Yara A Khatib, Brandon J Willis, Louise Lanoue, Oliver Fiehn, David E Olson
{"title":"吲哚乙胺n -甲基转移酶缺失影响小鼠行为而不破坏内源性迷幻色胺的产生。","authors":"Cassandra J Hatzipantelis, Lindsay P Cameron, Min Liu, Seona D Patel, Hannah N Saeger, Anna M M Vernier, Yara A Khatib, Brandon J Willis, Louise Lanoue, Oliver Fiehn, David E Olson","doi":"10.1021/acschemneuro.5c00384","DOIUrl":null,"url":null,"abstract":"<p><p>Exogenously administered psychedelics produce both rapid and long-lasting effects on neuroplasticity and behavior, but it is currently unclear if endogenously produced psychedelics can elicit similar effects. There have been relatively few studies on the role of endogenous psychedelics in health and disease, perhaps owing to the difficulty in quantifying their levels and manipulating their production. Here, we describe highly sensitive mass spectrometry-based analytical methods for quantifying endogenous psychedelics in mice, and we disclose a genetic mouse model lacking indolethylamine <i>N</i>-methyltransferase (INMT), an enzyme believed to play a critical role in the production of endogenous psychedelics and previously characterized as a thioether <i>S</i>-methyltransferase. We found that INMT knockout (KO) does not produce any major abnormalities in reproduction or growth, but it does impact a range of mouse behaviors across several distinct domains. However, INMT KO did not result in an obvious decrease in endogenous psychedelic levels, suggesting that psychedelics might be produced by alternative biosynthetic pathways in rodents.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indolethylamine <i>N</i>-Methyltransferase Deletion Impacts Mouse Behavior without Disrupting Endogenous Psychedelic Tryptamine Production.\",\"authors\":\"Cassandra J Hatzipantelis, Lindsay P Cameron, Min Liu, Seona D Patel, Hannah N Saeger, Anna M M Vernier, Yara A Khatib, Brandon J Willis, Louise Lanoue, Oliver Fiehn, David E Olson\",\"doi\":\"10.1021/acschemneuro.5c00384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exogenously administered psychedelics produce both rapid and long-lasting effects on neuroplasticity and behavior, but it is currently unclear if endogenously produced psychedelics can elicit similar effects. There have been relatively few studies on the role of endogenous psychedelics in health and disease, perhaps owing to the difficulty in quantifying their levels and manipulating their production. Here, we describe highly sensitive mass spectrometry-based analytical methods for quantifying endogenous psychedelics in mice, and we disclose a genetic mouse model lacking indolethylamine <i>N</i>-methyltransferase (INMT), an enzyme believed to play a critical role in the production of endogenous psychedelics and previously characterized as a thioether <i>S</i>-methyltransferase. We found that INMT knockout (KO) does not produce any major abnormalities in reproduction or growth, but it does impact a range of mouse behaviors across several distinct domains. However, INMT KO did not result in an obvious decrease in endogenous psychedelic levels, suggesting that psychedelics might be produced by alternative biosynthetic pathways in rodents.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.5c00384\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00384","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exogenously administered psychedelics produce both rapid and long-lasting effects on neuroplasticity and behavior, but it is currently unclear if endogenously produced psychedelics can elicit similar effects. There have been relatively few studies on the role of endogenous psychedelics in health and disease, perhaps owing to the difficulty in quantifying their levels and manipulating their production. Here, we describe highly sensitive mass spectrometry-based analytical methods for quantifying endogenous psychedelics in mice, and we disclose a genetic mouse model lacking indolethylamine N-methyltransferase (INMT), an enzyme believed to play a critical role in the production of endogenous psychedelics and previously characterized as a thioether S-methyltransferase. We found that INMT knockout (KO) does not produce any major abnormalities in reproduction or growth, but it does impact a range of mouse behaviors across several distinct domains. However, INMT KO did not result in an obvious decrease in endogenous psychedelic levels, suggesting that psychedelics might be produced by alternative biosynthetic pathways in rodents.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research