壁挂式半球绕流涡度的产生和输运特性及其对流动结构的影响

IF 0.6 4区 工程技术 Q4 MECHANICS
X. Qiu, X. L. Zhang, Y. Fu, X. L. Xie, Y. Z. Tao, Y. L. Liu
{"title":"壁挂式半球绕流涡度的产生和输运特性及其对流动结构的影响","authors":"X. Qiu,&nbsp;X. L. Zhang,&nbsp;Y. Fu,&nbsp;X. L. Xie,&nbsp;Y. Z. Tao,&nbsp;Y. L. Liu","doi":"10.1134/S0015462825601123","DOIUrl":null,"url":null,"abstract":"<p>In this study, direct numerical simulation (DNS) is carried out to investigate flow around a wall-mounted hemisphere at a Reynolds number Re = 1000. The generation and transport characteristics of vorticity are analyzed based on the simulation results, deepening the understanding of the evolution mechanisms of vortex structures. The main flow features include near-wall recirculation vortices wrapping around the hemisphere, a large recirculation zone formed by flow separation at the apex, and hairpin vortices shedding downstream of the recirculation region along with several secondary vortical structures. From a vortex dynamics perspective, spanwise vorticity consistently dominates, contributing more than 60% to the total enstrophy. In the upstream recirculation vortices, spanwise vorticity is mainly amplified by stretching, while streamwise vorticity is generated through transfer from spanwise vorticity, manifested as spanwise stretching, spreading, and streamwise twisting of the recirculation structures. Vorticity generation occurs primarily on the windward face and upstream of the separation points due to fluid–surface interaction, followed by redistribution under the influence of surface curvature. In the near-wake evolution of arch vortices, strong transfer from wall-normal and spanwise vorticity to streamwise vorticity is identified as the key mechanism for the formation of hairpin vortices.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vorticity Generation and Transport Characteristics in Flow around a Wall-Mounted Hemisphere and the Influence on Flow Structures\",\"authors\":\"X. Qiu,&nbsp;X. L. Zhang,&nbsp;Y. Fu,&nbsp;X. L. Xie,&nbsp;Y. Z. Tao,&nbsp;Y. L. Liu\",\"doi\":\"10.1134/S0015462825601123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, direct numerical simulation (DNS) is carried out to investigate flow around a wall-mounted hemisphere at a Reynolds number Re = 1000. The generation and transport characteristics of vorticity are analyzed based on the simulation results, deepening the understanding of the evolution mechanisms of vortex structures. The main flow features include near-wall recirculation vortices wrapping around the hemisphere, a large recirculation zone formed by flow separation at the apex, and hairpin vortices shedding downstream of the recirculation region along with several secondary vortical structures. From a vortex dynamics perspective, spanwise vorticity consistently dominates, contributing more than 60% to the total enstrophy. In the upstream recirculation vortices, spanwise vorticity is mainly amplified by stretching, while streamwise vorticity is generated through transfer from spanwise vorticity, manifested as spanwise stretching, spreading, and streamwise twisting of the recirculation structures. Vorticity generation occurs primarily on the windward face and upstream of the separation points due to fluid–surface interaction, followed by redistribution under the influence of surface curvature. In the near-wake evolution of arch vortices, strong transfer from wall-normal and spanwise vorticity to streamwise vorticity is identified as the key mechanism for the formation of hairpin vortices.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462825601123\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462825601123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,采用直接数值模拟(DNS)研究了雷诺数Re = 1000时壁挂式半球的流动。根据模拟结果分析了涡度的产生和输送特征,加深了对涡结构演化机制的认识。主要的流动特征包括近壁面环绕半球的再循环涡、顶部流动分离形成的大面积再循环区、再循环区下游脱落的发夹涡以及若干次涡结构。从涡旋动力学的角度来看,展向涡度始终占主导地位,占总熵的60%以上。在上游再环流涡中,展向涡度主要通过拉伸来放大,而展向涡度则通过展向涡度的传递来产生,表现为再环流结构的展向拉伸、展向扩展和展向扭转。涡度的产生主要发生在迎风面和分离点的上游,由于流-面相互作用,然后在表面曲率的影响下重新分布。在拱涡的近尾迹演化过程中,从壁向和展向涡量的强转移是形成发夹涡的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vorticity Generation and Transport Characteristics in Flow around a Wall-Mounted Hemisphere and the Influence on Flow Structures

Vorticity Generation and Transport Characteristics in Flow around a Wall-Mounted Hemisphere and the Influence on Flow Structures

In this study, direct numerical simulation (DNS) is carried out to investigate flow around a wall-mounted hemisphere at a Reynolds number Re = 1000. The generation and transport characteristics of vorticity are analyzed based on the simulation results, deepening the understanding of the evolution mechanisms of vortex structures. The main flow features include near-wall recirculation vortices wrapping around the hemisphere, a large recirculation zone formed by flow separation at the apex, and hairpin vortices shedding downstream of the recirculation region along with several secondary vortical structures. From a vortex dynamics perspective, spanwise vorticity consistently dominates, contributing more than 60% to the total enstrophy. In the upstream recirculation vortices, spanwise vorticity is mainly amplified by stretching, while streamwise vorticity is generated through transfer from spanwise vorticity, manifested as spanwise stretching, spreading, and streamwise twisting of the recirculation structures. Vorticity generation occurs primarily on the windward face and upstream of the separation points due to fluid–surface interaction, followed by redistribution under the influence of surface curvature. In the near-wake evolution of arch vortices, strong transfer from wall-normal and spanwise vorticity to streamwise vorticity is identified as the key mechanism for the formation of hairpin vortices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信