{"title":"NGBoost与传统机器学习模型在地聚合物混凝土抗压强度预测中的比较研究","authors":"K. Ramujee, D. Praseeda","doi":"10.1007/s42107-025-01449-x","DOIUrl":null,"url":null,"abstract":"<div><p>While several studies have previously explored the prediction of compressive strength in geopolymer concrete, many suffer from limitations in feature selection, model generalizability, and prediction accuracy. This invention aims to enhance the prediction process by employing advanced machine learning algorithms capable of capturing complex, non-linear relationships between mix design parameters and compressive strength outcomes. To realize this objective, a dataset consisting of 276 geopolymer concrete mixes and their corresponding 28-day compressive strength values was compiled. Input features were selected based on two key criteria: their proven relevance in prior literature and their statistical significance in model performance. Multiple regression models—including Linear Regression, Decision Tree, Random Forest, Gradient Boosting, XGBoost, and NGBoost—were implemented and evaluated. Through trial-and-error, optimal hyperparameters such as the number of training epochs and k-fold values for cross-validation were determined. Model performance was assessed using standard evaluation metrics (R, RMSE, MAE, MSE), and further validated via score-based analysis. The model’s adaptability was tested using an independent secondary dataset. The results confirm that the NGBoost model achieved the most accurate predictions among all tested models, outperforming traditional approaches in both accuracy and consistency. This invention offers a scalable and reliable solution for predicting compressive strength, significantly reducing the need for physical trial mixes and enabling efficient, data-driven mix design in geopolymer concrete applications.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 11","pages":"4665 - 4677"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of NGBoost and traditional machine learning models for prediction of compressive strength of geopolymer concrete\",\"authors\":\"K. Ramujee, D. Praseeda\",\"doi\":\"10.1007/s42107-025-01449-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While several studies have previously explored the prediction of compressive strength in geopolymer concrete, many suffer from limitations in feature selection, model generalizability, and prediction accuracy. This invention aims to enhance the prediction process by employing advanced machine learning algorithms capable of capturing complex, non-linear relationships between mix design parameters and compressive strength outcomes. To realize this objective, a dataset consisting of 276 geopolymer concrete mixes and their corresponding 28-day compressive strength values was compiled. Input features were selected based on two key criteria: their proven relevance in prior literature and their statistical significance in model performance. Multiple regression models—including Linear Regression, Decision Tree, Random Forest, Gradient Boosting, XGBoost, and NGBoost—were implemented and evaluated. Through trial-and-error, optimal hyperparameters such as the number of training epochs and k-fold values for cross-validation were determined. Model performance was assessed using standard evaluation metrics (R, RMSE, MAE, MSE), and further validated via score-based analysis. The model’s adaptability was tested using an independent secondary dataset. The results confirm that the NGBoost model achieved the most accurate predictions among all tested models, outperforming traditional approaches in both accuracy and consistency. This invention offers a scalable and reliable solution for predicting compressive strength, significantly reducing the need for physical trial mixes and enabling efficient, data-driven mix design in geopolymer concrete applications.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"26 11\",\"pages\":\"4665 - 4677\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-025-01449-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01449-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A comparative study of NGBoost and traditional machine learning models for prediction of compressive strength of geopolymer concrete
While several studies have previously explored the prediction of compressive strength in geopolymer concrete, many suffer from limitations in feature selection, model generalizability, and prediction accuracy. This invention aims to enhance the prediction process by employing advanced machine learning algorithms capable of capturing complex, non-linear relationships between mix design parameters and compressive strength outcomes. To realize this objective, a dataset consisting of 276 geopolymer concrete mixes and their corresponding 28-day compressive strength values was compiled. Input features were selected based on two key criteria: their proven relevance in prior literature and their statistical significance in model performance. Multiple regression models—including Linear Regression, Decision Tree, Random Forest, Gradient Boosting, XGBoost, and NGBoost—were implemented and evaluated. Through trial-and-error, optimal hyperparameters such as the number of training epochs and k-fold values for cross-validation were determined. Model performance was assessed using standard evaluation metrics (R, RMSE, MAE, MSE), and further validated via score-based analysis. The model’s adaptability was tested using an independent secondary dataset. The results confirm that the NGBoost model achieved the most accurate predictions among all tested models, outperforming traditional approaches in both accuracy and consistency. This invention offers a scalable and reliable solution for predicting compressive strength, significantly reducing the need for physical trial mixes and enabling efficient, data-driven mix design in geopolymer concrete applications.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.