多输出机器学习技术预测纳米氧化石墨烯增强水泥复合材料的强度特性

Q2 Engineering
S. K. Lal Mohiddin, B. Yashwanth, D. Ravi Parsad
{"title":"多输出机器学习技术预测纳米氧化石墨烯增强水泥复合材料的强度特性","authors":"S. K. Lal Mohiddin,&nbsp;B. Yashwanth,&nbsp;D. Ravi Parsad","doi":"10.1007/s42107-025-01437-1","DOIUrl":null,"url":null,"abstract":"<div><p>The use of nano graphene oxide (GO) in cement composites has shown tremendous potential for improving strength and performance characteristics. The impact of the addition of GO in concrete remains uncertain due to the interaction of the mix ingredients with the graphene oxide. To examine the influence of multiple coupling parameters on forecasting the mechanical properties using traditional experimental methods are cumbersome. In this study, Machine Learning (ML) approaches are used to investigate the intricate relationship between the multiple influencing parameters on the mechanical properties of GO reinforced cement composites. A comprehensive collection of 260 datasets related to GO, with 10 input parameters, was collected to train and test the machine learning models. Different Machine Learning techniques were applied to predict the multi-output parameters simultaneously. The SHapley Additive exPlanations approach identified the most influential parameters of the composite strength characteristics. The results revealed that the XGBoost model delivered highly accurate predictions, with lower RMSE, MSE, and MAE values, and a higher R<sup>2</sup> value of 0.9 compared to other ML models. Multi-Output Machine Learning Techniques have proven to be a quick and cost-effective solution, an alternative to time-consuming traditional tests.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 11","pages":"4517 - 4533"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-output machine learning techniques to predict strength characteristics of nano graphene oxide reinforced cement composites\",\"authors\":\"S. K. Lal Mohiddin,&nbsp;B. Yashwanth,&nbsp;D. Ravi Parsad\",\"doi\":\"10.1007/s42107-025-01437-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of nano graphene oxide (GO) in cement composites has shown tremendous potential for improving strength and performance characteristics. The impact of the addition of GO in concrete remains uncertain due to the interaction of the mix ingredients with the graphene oxide. To examine the influence of multiple coupling parameters on forecasting the mechanical properties using traditional experimental methods are cumbersome. In this study, Machine Learning (ML) approaches are used to investigate the intricate relationship between the multiple influencing parameters on the mechanical properties of GO reinforced cement composites. A comprehensive collection of 260 datasets related to GO, with 10 input parameters, was collected to train and test the machine learning models. Different Machine Learning techniques were applied to predict the multi-output parameters simultaneously. The SHapley Additive exPlanations approach identified the most influential parameters of the composite strength characteristics. The results revealed that the XGBoost model delivered highly accurate predictions, with lower RMSE, MSE, and MAE values, and a higher R<sup>2</sup> value of 0.9 compared to other ML models. Multi-Output Machine Learning Techniques have proven to be a quick and cost-effective solution, an alternative to time-consuming traditional tests.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"26 11\",\"pages\":\"4517 - 4533\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-025-01437-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01437-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在水泥复合材料中使用纳米氧化石墨烯(GO)在提高强度和性能特性方面显示出巨大的潜力。由于混合成分与氧化石墨烯的相互作用,在混凝土中添加氧化石墨烯的影响仍然不确定。采用传统的实验方法来研究多个耦合参数对预测力学性能的影响是十分繁琐的。本研究采用机器学习(ML)方法研究了影响氧化石墨烯增强水泥复合材料力学性能的多个参数之间的复杂关系。收集了260个与围棋相关的数据集,其中包含10个输入参数,用于训练和测试机器学习模型。采用不同的机器学习技术同时预测多输出参数。SHapley加性解释方法确定了对复合材料强度特性影响最大的参数。结果表明,与其他ML模型相比,XGBoost模型具有较低的RMSE、MSE和MAE值,并且R2值较高,为0.9。多输出机器学习技术已被证明是一种快速且具有成本效益的解决方案,是耗时的传统测试的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-output machine learning techniques to predict strength characteristics of nano graphene oxide reinforced cement composites

The use of nano graphene oxide (GO) in cement composites has shown tremendous potential for improving strength and performance characteristics. The impact of the addition of GO in concrete remains uncertain due to the interaction of the mix ingredients with the graphene oxide. To examine the influence of multiple coupling parameters on forecasting the mechanical properties using traditional experimental methods are cumbersome. In this study, Machine Learning (ML) approaches are used to investigate the intricate relationship between the multiple influencing parameters on the mechanical properties of GO reinforced cement composites. A comprehensive collection of 260 datasets related to GO, with 10 input parameters, was collected to train and test the machine learning models. Different Machine Learning techniques were applied to predict the multi-output parameters simultaneously. The SHapley Additive exPlanations approach identified the most influential parameters of the composite strength characteristics. The results revealed that the XGBoost model delivered highly accurate predictions, with lower RMSE, MSE, and MAE values, and a higher R2 value of 0.9 compared to other ML models. Multi-Output Machine Learning Techniques have proven to be a quick and cost-effective solution, an alternative to time-consuming traditional tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信