分离双星系统组分的恒星风

IF 0.7 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
A. V. Tutukov, A. V. Sobolev
{"title":"分离双星系统组分的恒星风","authors":"A. V. Tutukov,&nbsp;A. V. Sobolev","doi":"10.1134/S1063772925702038","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to the consideration of the role of the donor stellar wind in the matter exchange between the components of detached binary systems. A classification of close binary systems with interacting components is proposed. A list of potential donors and accretors of such systems, including X-ray binary and symbiotic stars, is given. Analytical tasks have been completed to evaluate the conditions and efficiency of interaction through the stellar wind, a criterion was found for maintaining the self-induced stellar wind of X-ray binaries, and a condition for the formation of an accretion disk during accretion of stellar wind matter by a compact accretor. Three-dimensional gas dynamic models of component interaction are constructed for the five initial velocities of the stellar wind using the example of Sco X-1 type systems. The simulation results are illustrated by pictures of streamlines, temperature distribution, and wind gas densities in the orbital and frontal planes. Model focusing of the donor wind flow by the accretor is confirmed by the observed phase X-ray light curve of Vela X-1.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"69 8","pages":"652 - 684"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stellar Wind of Components of Detached Binary Systems\",\"authors\":\"A. V. Tutukov,&nbsp;A. V. Sobolev\",\"doi\":\"10.1134/S1063772925702038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper is devoted to the consideration of the role of the donor stellar wind in the matter exchange between the components of detached binary systems. A classification of close binary systems with interacting components is proposed. A list of potential donors and accretors of such systems, including X-ray binary and symbiotic stars, is given. Analytical tasks have been completed to evaluate the conditions and efficiency of interaction through the stellar wind, a criterion was found for maintaining the self-induced stellar wind of X-ray binaries, and a condition for the formation of an accretion disk during accretion of stellar wind matter by a compact accretor. Three-dimensional gas dynamic models of component interaction are constructed for the five initial velocities of the stellar wind using the example of Sco X-1 type systems. The simulation results are illustrated by pictures of streamlines, temperature distribution, and wind gas densities in the orbital and frontal planes. Model focusing of the donor wind flow by the accretor is confirmed by the observed phase X-ray light curve of Vela X-1.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":\"69 8\",\"pages\":\"652 - 684\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063772925702038\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772925702038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在分离双星系统组分之间的物质交换中,施主星风的作用。提出了一种具有相互作用分量的紧密双星系统的分类方法。这类系统包括x射线双星和共生恒星,给出了潜在的供体和吸积体清单。完成了通过恒星风相互作用的条件和效率的分析任务,找到了维持x射线双星自致恒星风的判据,以及紧致吸积体吸积恒星风物质过程中形成吸积盘的条件。以Sco X-1型系统为例,建立了五种初始速度的恒星风组分相互作用的三维气体动力学模型。模拟结果由轨道面和锋面的流线图、温度分布图和风气密度图说明。通过观测到的船帆X-1的相位x射线光曲线证实了吸积体对供体气流的模型聚焦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stellar Wind of Components of Detached Binary Systems

Stellar Wind of Components of Detached Binary Systems

The paper is devoted to the consideration of the role of the donor stellar wind in the matter exchange between the components of detached binary systems. A classification of close binary systems with interacting components is proposed. A list of potential donors and accretors of such systems, including X-ray binary and symbiotic stars, is given. Analytical tasks have been completed to evaluate the conditions and efficiency of interaction through the stellar wind, a criterion was found for maintaining the self-induced stellar wind of X-ray binaries, and a condition for the formation of an accretion disk during accretion of stellar wind matter by a compact accretor. Three-dimensional gas dynamic models of component interaction are constructed for the five initial velocities of the stellar wind using the example of Sco X-1 type systems. The simulation results are illustrated by pictures of streamlines, temperature distribution, and wind gas densities in the orbital and frontal planes. Model focusing of the donor wind flow by the accretor is confirmed by the observed phase X-ray light curve of Vela X-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy Reports
Astronomy Reports 地学天文-天文与天体物理
CiteScore
1.40
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信