预测大体积粉煤灰混凝土抗压强度的可解释机器学习模型

Q2 Engineering
Anish Kumar, Sameer Sen, Manish Pratap Singh, Sanjeev Sinha, Bimal Kumar
{"title":"预测大体积粉煤灰混凝土抗压强度的可解释机器学习模型","authors":"Anish Kumar,&nbsp;Sameer Sen,&nbsp;Manish Pratap Singh,&nbsp;Sanjeev Sinha,&nbsp;Bimal Kumar","doi":"10.1007/s42107-025-01454-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of incorporating fly ash (FA) and silica fume (SF) into concrete and evaluates the predictive accuracy of machine learning models such as Backpropagation Neural Network (BPNN), Random Forest Regressor (RFR), and Gradient Boosting Regressor (GBR), on compressive strength. Optimal performance was achieved with 50–60% FA and 8–10% SF, reaching strengths above 76 MPa at 90 days, while 100% FA with 10% SF reached 71.13 MPa at 90 days versus 27.6 MPa at 14 days. Among all models, GBR showed the best accuracy (R² = 0.996, MSE = 0.578, MAPE = 0.941%), with SHAP and Partial Dependence analyses confirming curing time as the most influential factor, followed by %SF and %FA. Perturbation analysis confirmed GBR’s robustness to input variation, and monotonicity analysis revealed a strong positive trend between curing time and strength (Spearman correlation = 0.9245), confirming GBR’s suitability for strength prediction and mix optimization.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 11","pages":"4753 - 4773"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable machine learning models for predicting compressive strength of high-volume fly ash concrete\",\"authors\":\"Anish Kumar,&nbsp;Sameer Sen,&nbsp;Manish Pratap Singh,&nbsp;Sanjeev Sinha,&nbsp;Bimal Kumar\",\"doi\":\"10.1007/s42107-025-01454-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the effects of incorporating fly ash (FA) and silica fume (SF) into concrete and evaluates the predictive accuracy of machine learning models such as Backpropagation Neural Network (BPNN), Random Forest Regressor (RFR), and Gradient Boosting Regressor (GBR), on compressive strength. Optimal performance was achieved with 50–60% FA and 8–10% SF, reaching strengths above 76 MPa at 90 days, while 100% FA with 10% SF reached 71.13 MPa at 90 days versus 27.6 MPa at 14 days. Among all models, GBR showed the best accuracy (R² = 0.996, MSE = 0.578, MAPE = 0.941%), with SHAP and Partial Dependence analyses confirming curing time as the most influential factor, followed by %SF and %FA. Perturbation analysis confirmed GBR’s robustness to input variation, and monotonicity analysis revealed a strong positive trend between curing time and strength (Spearman correlation = 0.9245), confirming GBR’s suitability for strength prediction and mix optimization.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"26 11\",\"pages\":\"4753 - 4773\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-025-01454-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01454-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了将粉煤灰(FA)和硅灰(SF)掺入混凝土的影响,并评估了机器学习模型(如反向传播神经网络(BPNN)、随机森林回归器(RFR)和梯度增强回归器(GBR)对抗压强度的预测准确性。50-60% FA和8-10% SF的性能最佳,在90天达到76 MPa以上,100% FA和10% SF在90天达到71.13 MPa, 14天达到27.6 MPa。在所有模型中,GBR模型的准确率最高(R²= 0.996,MSE = 0.578, MAPE = 0.941%), SHAP和偏相关分析证实固化时间是影响最大的因素,其次是%SF和%FA。微扰分析证实了GBR对输入变量的鲁棒性,单调性分析显示,养护时间与强度呈较强的正相关(Spearman相关= 0.9245),证实了GBR对强度预测和配合比优化的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable machine learning models for predicting compressive strength of high-volume fly ash concrete

This study investigates the effects of incorporating fly ash (FA) and silica fume (SF) into concrete and evaluates the predictive accuracy of machine learning models such as Backpropagation Neural Network (BPNN), Random Forest Regressor (RFR), and Gradient Boosting Regressor (GBR), on compressive strength. Optimal performance was achieved with 50–60% FA and 8–10% SF, reaching strengths above 76 MPa at 90 days, while 100% FA with 10% SF reached 71.13 MPa at 90 days versus 27.6 MPa at 14 days. Among all models, GBR showed the best accuracy (R² = 0.996, MSE = 0.578, MAPE = 0.941%), with SHAP and Partial Dependence analyses confirming curing time as the most influential factor, followed by %SF and %FA. Perturbation analysis confirmed GBR’s robustness to input variation, and monotonicity analysis revealed a strong positive trend between curing time and strength (Spearman correlation = 0.9245), confirming GBR’s suitability for strength prediction and mix optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信