非均匀斯特林数与非均匀贝尔多项式

IF 1.5 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
T. Kim, D. S. Kim
{"title":"非均匀斯特林数与非均匀贝尔多项式","authors":"T. Kim,&nbsp;D. S. Kim","doi":"10.1134/S1061920825601065","DOIUrl":null,"url":null,"abstract":"<p> This paper introduces a novel generalization of Stirling and Lah numbers, termed “heterogeneous Stirling numbers,” which smoothly interpolate between these classical combinatorial sequences. Specifically, we define heterogeneous Stirling numbers of the second and first kinds, demonstrating their convergence to standard Stirling numbers as <span>\\(\\lambda \\rightarrow 0\\)</span> and to (signed) Lah numbers as <span>\\(\\lambda \\rightarrow 1\\)</span>. We derive fundamental properties, including generating functions, explicit formulas, and recurrence relations. Furthermore, we extend these concepts to heterogeneous Bell polynomials, obtaining analogous results such as generating function, combinatorial identity and Dobinski-like formula. Finally, we introduce and analyse heterogeneous <span>\\(r\\)</span>-Stirling numbers of the second kind and their associated <span>\\(r\\)</span>-Bell polynomials. </p><p> <b> DOI</b> 10.1134/S1061920825601065 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 3","pages":"498 - 509"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Stirling Numbers and Heterogeneous Bell Polynomials\",\"authors\":\"T. Kim,&nbsp;D. S. Kim\",\"doi\":\"10.1134/S1061920825601065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> This paper introduces a novel generalization of Stirling and Lah numbers, termed “heterogeneous Stirling numbers,” which smoothly interpolate between these classical combinatorial sequences. Specifically, we define heterogeneous Stirling numbers of the second and first kinds, demonstrating their convergence to standard Stirling numbers as <span>\\\\(\\\\lambda \\\\rightarrow 0\\\\)</span> and to (signed) Lah numbers as <span>\\\\(\\\\lambda \\\\rightarrow 1\\\\)</span>. We derive fundamental properties, including generating functions, explicit formulas, and recurrence relations. Furthermore, we extend these concepts to heterogeneous Bell polynomials, obtaining analogous results such as generating function, combinatorial identity and Dobinski-like formula. Finally, we introduce and analyse heterogeneous <span>\\\\(r\\\\)</span>-Stirling numbers of the second kind and their associated <span>\\\\(r\\\\)</span>-Bell polynomials. </p><p> <b> DOI</b> 10.1134/S1061920825601065 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 3\",\"pages\":\"498 - 509\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920825601065\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825601065","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了斯特林数和拉赫数的一种新的推广,称为“异质斯特林数”,它平滑地插补在这些经典组合序列之间。具体来说,我们定义了第二类和第一类异质斯特林数,证明了它们收敛于标准斯特林数为\(\lambda \rightarrow 0\),收敛于(带符号的)Lah数为\(\lambda \rightarrow 1\)。我们推导基本性质,包括生成函数、显式公式和递归关系。进一步,我们将这些概念推广到异质贝尔多项式中,得到了类似的结果,如生成函数、组合恒等式和类多宾斯基公式。最后,介绍并分析了第二类非均质\(r\) -Stirling数及其相关的\(r\) -Bell多项式。Doi 10.1134/ s1061920825601065
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Stirling Numbers and Heterogeneous Bell Polynomials

This paper introduces a novel generalization of Stirling and Lah numbers, termed “heterogeneous Stirling numbers,” which smoothly interpolate between these classical combinatorial sequences. Specifically, we define heterogeneous Stirling numbers of the second and first kinds, demonstrating their convergence to standard Stirling numbers as \(\lambda \rightarrow 0\) and to (signed) Lah numbers as \(\lambda \rightarrow 1\). We derive fundamental properties, including generating functions, explicit formulas, and recurrence relations. Furthermore, we extend these concepts to heterogeneous Bell polynomials, obtaining analogous results such as generating function, combinatorial identity and Dobinski-like formula. Finally, we introduce and analyse heterogeneous \(r\)-Stirling numbers of the second kind and their associated \(r\)-Bell polynomials.

DOI 10.1134/S1061920825601065

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信