{"title":"简化力学模型中的机械化学共结晶:使用太赫兹- tds的解耦动力学和机制","authors":"Ruohan Zhang and J. Axel Zeitler","doi":"10.1039/D5CE00625B","DOIUrl":null,"url":null,"abstract":"<p >Mechanical compaction plays a dual role in mechanochemical cocrystallisation, simultaneously influencing reaction rates and crystallisation pathways. Here, we introduce a simplified single-punch compaction model that allows systematic variation of force (5–40 kN) and dwell time under controlled conditions. Using terahertz time-domain spectroscopy (THz-TDS) combined with a dual kinetic fitting strategy (free-fit <em>vs.</em> fixed-<em>n</em> Avrami models), we decouple kinetic rate constants from mechanism changes and map force-dependent transitions in a TPMA–PE cocrystallisation system. Increasing compaction force from 5 kN to 40 kN reduced the fitted rate constant <em>k</em><small><sub>free</sub></small> from 0.2147 to 0.1195 h<small><sup>−<em>n</em></sup></small>, while increasing the Avrami exponent <em>n</em><small><sub>free</sub></small> from 0.6409 to 1.2057. This suggests a force-driven transition from diffusion-limited or heterogeneous nucleation to more interface-controlled one-dimensional crystallisation. These findings provide new mechanistic insight into how mechanical energy inputs shape solid-state transformations, with implications for process optimisation in pharmaceutical manufacturing, especially in continuous production environments where compaction profiles vary dynamically.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 38","pages":" 6360-6372"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00625b?page=search","citationCount":"0","resultStr":"{\"title\":\"Mechanochemical cocrystallisation in a simplified mechanical model: decoupling kinetics and mechanisms using THz-TDS\",\"authors\":\"Ruohan Zhang and J. Axel Zeitler\",\"doi\":\"10.1039/D5CE00625B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mechanical compaction plays a dual role in mechanochemical cocrystallisation, simultaneously influencing reaction rates and crystallisation pathways. Here, we introduce a simplified single-punch compaction model that allows systematic variation of force (5–40 kN) and dwell time under controlled conditions. Using terahertz time-domain spectroscopy (THz-TDS) combined with a dual kinetic fitting strategy (free-fit <em>vs.</em> fixed-<em>n</em> Avrami models), we decouple kinetic rate constants from mechanism changes and map force-dependent transitions in a TPMA–PE cocrystallisation system. Increasing compaction force from 5 kN to 40 kN reduced the fitted rate constant <em>k</em><small><sub>free</sub></small> from 0.2147 to 0.1195 h<small><sup>−<em>n</em></sup></small>, while increasing the Avrami exponent <em>n</em><small><sub>free</sub></small> from 0.6409 to 1.2057. This suggests a force-driven transition from diffusion-limited or heterogeneous nucleation to more interface-controlled one-dimensional crystallisation. These findings provide new mechanistic insight into how mechanical energy inputs shape solid-state transformations, with implications for process optimisation in pharmaceutical manufacturing, especially in continuous production environments where compaction profiles vary dynamically.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 38\",\"pages\":\" 6360-6372\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00625b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00625b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00625b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
机械压实在机械化学共结晶中起双重作用,同时影响反应速率和结晶途径。在这里,我们介绍了一个简化的单冲压实模型,允许在受控条件下系统地改变力(5-40 kN)和停留时间。利用太赫兹时域光谱(THz-TDS)结合双动力学拟合策略(自由拟合与固定n Avrami模型),我们将动力学速率常数与机制变化解耦,并绘制了TPMA-PE共结晶体系中力依赖的转变。将压实力从5 kN增加到40 kN,拟合速率常数kfree从0.2147增加到0.1195 h - n, Avrami指数nfree从0.6409增加到1.2057。这表明从扩散限制或非均相成核到更多界面控制的一维结晶的力驱动转变。这些发现为机械能输入如何形成固态转化提供了新的机制见解,对制药制造过程优化具有重要意义,特别是在连续生产环境中,压实曲线动态变化。
Mechanochemical cocrystallisation in a simplified mechanical model: decoupling kinetics and mechanisms using THz-TDS
Mechanical compaction plays a dual role in mechanochemical cocrystallisation, simultaneously influencing reaction rates and crystallisation pathways. Here, we introduce a simplified single-punch compaction model that allows systematic variation of force (5–40 kN) and dwell time under controlled conditions. Using terahertz time-domain spectroscopy (THz-TDS) combined with a dual kinetic fitting strategy (free-fit vs. fixed-n Avrami models), we decouple kinetic rate constants from mechanism changes and map force-dependent transitions in a TPMA–PE cocrystallisation system. Increasing compaction force from 5 kN to 40 kN reduced the fitted rate constant kfree from 0.2147 to 0.1195 h−n, while increasing the Avrami exponent nfree from 0.6409 to 1.2057. This suggests a force-driven transition from diffusion-limited or heterogeneous nucleation to more interface-controlled one-dimensional crystallisation. These findings provide new mechanistic insight into how mechanical energy inputs shape solid-state transformations, with implications for process optimisation in pharmaceutical manufacturing, especially in continuous production environments where compaction profiles vary dynamically.