{"title":"考虑平衡利用和延长多电解槽寿命的可再生能源制氢系统协同运行","authors":"Shibo Wang;Lingguo Kong;Chao Liu;Chuang Liu;Guowei Cai;Shaobang Zhang;Shi You;Hanwen Zhang;Zhe Chen","doi":"10.1109/TSTE.2025.3578190","DOIUrl":null,"url":null,"abstract":"To address the challenges of low efficiency, poor economic performance, and limited adaptability in renewable energy–coupled alkaline water electrolysis (AWE) systems, this study proposes a power–state rolling optimization strategy (PSROS) based on a two-stage optimization framework. First, the large-scale AWE system is divided into multiple modules to reduce the variable dimension of the optimization problem. Then, a simplified module-level optimal efficiency model is developed based on the efficiency characteristics of AWE units. Subsequently, multi-objective optimization models are constructed at the module and unit levels, comprehensively considering hydrogen production volume, lifespan degradation, and utilization balancing. Finally, a finite-horizon rolling optimization mechanism is introduced to solve the two-stage optimization problem, improving the continuity and rationality of scheduling decisions at the end of each optimization horizon. Annual case study results demonstrate that, under the non-battery scenario, PSROS improves system efficiency by 9.92%, 11.12%, and 3.81%, and reduces the levelized cost of hydrogen (LCOH) by 4.14, 5.43, and 2.35 CNY/kg compared with the simple start-stop strategy (SSSS), array rotation strategy (ARS), and rolling optimization strategy (ROS), respectively. With battery integration, the system efficiency is further improved by 0.77%, and the LCOH is further reduced by 0.49 CNY/kg.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"3064-3081"},"PeriodicalIF":10.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Operation of Renewable Energy Hydrogen Production Systems Considering Balanced Utilization and Extended Lifespan of Multi-Electrolyzers\",\"authors\":\"Shibo Wang;Lingguo Kong;Chao Liu;Chuang Liu;Guowei Cai;Shaobang Zhang;Shi You;Hanwen Zhang;Zhe Chen\",\"doi\":\"10.1109/TSTE.2025.3578190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenges of low efficiency, poor economic performance, and limited adaptability in renewable energy–coupled alkaline water electrolysis (AWE) systems, this study proposes a power–state rolling optimization strategy (PSROS) based on a two-stage optimization framework. First, the large-scale AWE system is divided into multiple modules to reduce the variable dimension of the optimization problem. Then, a simplified module-level optimal efficiency model is developed based on the efficiency characteristics of AWE units. Subsequently, multi-objective optimization models are constructed at the module and unit levels, comprehensively considering hydrogen production volume, lifespan degradation, and utilization balancing. Finally, a finite-horizon rolling optimization mechanism is introduced to solve the two-stage optimization problem, improving the continuity and rationality of scheduling decisions at the end of each optimization horizon. Annual case study results demonstrate that, under the non-battery scenario, PSROS improves system efficiency by 9.92%, 11.12%, and 3.81%, and reduces the levelized cost of hydrogen (LCOH) by 4.14, 5.43, and 2.35 CNY/kg compared with the simple start-stop strategy (SSSS), array rotation strategy (ARS), and rolling optimization strategy (ROS), respectively. With battery integration, the system efficiency is further improved by 0.77%, and the LCOH is further reduced by 0.49 CNY/kg.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 4\",\"pages\":\"3064-3081\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11029129/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11029129/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Collaborative Operation of Renewable Energy Hydrogen Production Systems Considering Balanced Utilization and Extended Lifespan of Multi-Electrolyzers
To address the challenges of low efficiency, poor economic performance, and limited adaptability in renewable energy–coupled alkaline water electrolysis (AWE) systems, this study proposes a power–state rolling optimization strategy (PSROS) based on a two-stage optimization framework. First, the large-scale AWE system is divided into multiple modules to reduce the variable dimension of the optimization problem. Then, a simplified module-level optimal efficiency model is developed based on the efficiency characteristics of AWE units. Subsequently, multi-objective optimization models are constructed at the module and unit levels, comprehensively considering hydrogen production volume, lifespan degradation, and utilization balancing. Finally, a finite-horizon rolling optimization mechanism is introduced to solve the two-stage optimization problem, improving the continuity and rationality of scheduling decisions at the end of each optimization horizon. Annual case study results demonstrate that, under the non-battery scenario, PSROS improves system efficiency by 9.92%, 11.12%, and 3.81%, and reduces the levelized cost of hydrogen (LCOH) by 4.14, 5.43, and 2.35 CNY/kg compared with the simple start-stop strategy (SSSS), array rotation strategy (ARS), and rolling optimization strategy (ROS), respectively. With battery integration, the system efficiency is further improved by 0.77%, and the LCOH is further reduced by 0.49 CNY/kg.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.