富可再生电力系统频率波动的概率密度函数控制

IF 10 1区 工程技术 Q1 ENERGY & FUELS
Yonghao Gui;Hong Wang;Xiaoran Zha;Yaosuo Xue
{"title":"富可再生电力系统频率波动的概率密度函数控制","authors":"Yonghao Gui;Hong Wang;Xiaoran Zha;Yaosuo Xue","doi":"10.1109/TSTE.2025.3578278","DOIUrl":null,"url":null,"abstract":"The stochastic nature of renewable energy sources (RESs) necessitates treating power system frequency response as a random process with a nonstationary probability density function (PDF). Based upon the stochastic distribution control theory originated by the second author, this paper proposes a novel stochastic controller to improve the frequency PDF in power grids when integrating a large amount of RESs, thereby minimizing the effects of uncertainties and enhancing overall system stability. The key idea is to manipulate the controllable power generation resources so that the frequency PDF is make to follow a target PDF by using the stochastic distribution control theory originated by the second author. The proposed method can easily be plugged into existing automatic generation controls for multi-area transmission grids. The proposed method is validated via a modified Kundar’s two area system and 240-bus Western Electricity Coordinating Council systems. The simulation results show that the proposed control shapes the frequency PDF narrower and sharper, leading to a notable improvement toward minimizing the effects of randomness and uncertainty during grid operation.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"3048-3063"},"PeriodicalIF":10.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability Density Function Control of Frequency Fluctuations in Renewable-Rich Power Systems\",\"authors\":\"Yonghao Gui;Hong Wang;Xiaoran Zha;Yaosuo Xue\",\"doi\":\"10.1109/TSTE.2025.3578278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic nature of renewable energy sources (RESs) necessitates treating power system frequency response as a random process with a nonstationary probability density function (PDF). Based upon the stochastic distribution control theory originated by the second author, this paper proposes a novel stochastic controller to improve the frequency PDF in power grids when integrating a large amount of RESs, thereby minimizing the effects of uncertainties and enhancing overall system stability. The key idea is to manipulate the controllable power generation resources so that the frequency PDF is make to follow a target PDF by using the stochastic distribution control theory originated by the second author. The proposed method can easily be plugged into existing automatic generation controls for multi-area transmission grids. The proposed method is validated via a modified Kundar’s two area system and 240-bus Western Electricity Coordinating Council systems. The simulation results show that the proposed control shapes the frequency PDF narrower and sharper, leading to a notable improvement toward minimizing the effects of randomness and uncertainty during grid operation.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 4\",\"pages\":\"3048-3063\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11029151/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11029151/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源的随机特性要求将电力系统的频率响应视为具有非平稳概率密度函数(PDF)的随机过程。本文在第二作者提出的随机分布控制理论的基础上,提出了一种新的随机控制器,以改善大量RESs集成时电网中的频率PDF,从而最大限度地减少不确定性的影响,提高系统的整体稳定性。其核心思想是利用第二作者提出的随机分布控制理论,对可控发电资源进行操纵,使频率分布服从目标分布。该方法可以很容易地插入到现有的多区域输电网自动发电控制中。通过改进的昆达尔两区系统和240总线西部电力协调委员会系统验证了所提出的方法。仿真结果表明,所提出的控制方法使频率PDF更窄、更清晰,在最小化电网运行中的随机性和不确定性影响方面取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability Density Function Control of Frequency Fluctuations in Renewable-Rich Power Systems
The stochastic nature of renewable energy sources (RESs) necessitates treating power system frequency response as a random process with a nonstationary probability density function (PDF). Based upon the stochastic distribution control theory originated by the second author, this paper proposes a novel stochastic controller to improve the frequency PDF in power grids when integrating a large amount of RESs, thereby minimizing the effects of uncertainties and enhancing overall system stability. The key idea is to manipulate the controllable power generation resources so that the frequency PDF is make to follow a target PDF by using the stochastic distribution control theory originated by the second author. The proposed method can easily be plugged into existing automatic generation controls for multi-area transmission grids. The proposed method is validated via a modified Kundar’s two area system and 240-bus Western Electricity Coordinating Council systems. The simulation results show that the proposed control shapes the frequency PDF narrower and sharper, leading to a notable improvement toward minimizing the effects of randomness and uncertainty during grid operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信