{"title":"膜破坏减弱前列腺素受体的激动剂效力。","authors":"Uurtuya Hochban,Imke Wallenstein,Michaela Ulrich,Alwina Bittner,Lisa Spänig,Katharina Klingelhöfer,Sebastian Neumann,Torsten Steinmetzer,Moritz Bünemann,Michael Kurz","doi":"10.1042/bcj20253332","DOIUrl":null,"url":null,"abstract":"G protein-coupled receptors (GPCRs) are key signal transducers and the target of about one-third of all FDA-approved drugs. Many structural and pharmacological studies rely on disrupted membrane conditions, such as purified receptors in artificial systems or radioligand binding assays using membrane fragments, even though it had not been systematically studied whether membrane integrity affects GPCR function. To address this, we developed Förster resonance energy transfer (FRET)-based GPCR conformation sensors to directly measure receptor activation in both intact and disrupted membranes. Our results show that while some GPCRs remain unaffected, prostanoid receptor conformation sensors exhibit a strong dependence on membrane integrity: their agonist and antagonist potencies decrease up to 30-fold upon membrane disruption, revealing a crucial role of the membrane integrity in ligand-receptor affinity. Validation with wild-type receptors in functional signaling assays confirmed that these effects reflect genuine receptor characteristics rather than unspecific signals from the sensor design. We ruled out several factors that could explain the loss of affinity, but were unable to fully elucidate the mechanism behind this phenomenon. Nevertheless, this effect may introduce bias into structural and pharmacological studies. It is therefore essential to account for membrane integrity and to employ optimized experimental strategies to ensure robust and reliable data interpretation.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"29 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane disruption attenuates agonist potency in prostanoid receptors.\",\"authors\":\"Uurtuya Hochban,Imke Wallenstein,Michaela Ulrich,Alwina Bittner,Lisa Spänig,Katharina Klingelhöfer,Sebastian Neumann,Torsten Steinmetzer,Moritz Bünemann,Michael Kurz\",\"doi\":\"10.1042/bcj20253332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G protein-coupled receptors (GPCRs) are key signal transducers and the target of about one-third of all FDA-approved drugs. Many structural and pharmacological studies rely on disrupted membrane conditions, such as purified receptors in artificial systems or radioligand binding assays using membrane fragments, even though it had not been systematically studied whether membrane integrity affects GPCR function. To address this, we developed Förster resonance energy transfer (FRET)-based GPCR conformation sensors to directly measure receptor activation in both intact and disrupted membranes. Our results show that while some GPCRs remain unaffected, prostanoid receptor conformation sensors exhibit a strong dependence on membrane integrity: their agonist and antagonist potencies decrease up to 30-fold upon membrane disruption, revealing a crucial role of the membrane integrity in ligand-receptor affinity. Validation with wild-type receptors in functional signaling assays confirmed that these effects reflect genuine receptor characteristics rather than unspecific signals from the sensor design. We ruled out several factors that could explain the loss of affinity, but were unable to fully elucidate the mechanism behind this phenomenon. Nevertheless, this effect may introduce bias into structural and pharmacological studies. It is therefore essential to account for membrane integrity and to employ optimized experimental strategies to ensure robust and reliable data interpretation.\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/bcj20253332\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20253332","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Membrane disruption attenuates agonist potency in prostanoid receptors.
G protein-coupled receptors (GPCRs) are key signal transducers and the target of about one-third of all FDA-approved drugs. Many structural and pharmacological studies rely on disrupted membrane conditions, such as purified receptors in artificial systems or radioligand binding assays using membrane fragments, even though it had not been systematically studied whether membrane integrity affects GPCR function. To address this, we developed Förster resonance energy transfer (FRET)-based GPCR conformation sensors to directly measure receptor activation in both intact and disrupted membranes. Our results show that while some GPCRs remain unaffected, prostanoid receptor conformation sensors exhibit a strong dependence on membrane integrity: their agonist and antagonist potencies decrease up to 30-fold upon membrane disruption, revealing a crucial role of the membrane integrity in ligand-receptor affinity. Validation with wild-type receptors in functional signaling assays confirmed that these effects reflect genuine receptor characteristics rather than unspecific signals from the sensor design. We ruled out several factors that could explain the loss of affinity, but were unable to fully elucidate the mechanism behind this phenomenon. Nevertheless, this effect may introduce bias into structural and pharmacological studies. It is therefore essential to account for membrane integrity and to employ optimized experimental strategies to ensure robust and reliable data interpretation.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling