{"title":"颗粒结合的全氟烷基和多氟烷基物质的体外吸入生物利用度:影响因素和风险评估。","authors":"Bin Wang, Yiming Yao, Hongwen Sun","doi":"10.1007/s10653-025-02763-8","DOIUrl":null,"url":null,"abstract":"<p><p>Concerns regarding the inhaled risks of per- and polyfluoroalkyl substances (PFAS) in atmospheric particulate matter (APM) are continuously increasing. In this study, we collected APM of three sizes (PM1.0, PM2.5, and PM10) to investigate the bioavailability of PFAS. An in-vitro simulation method was employed using two simulated lung fluids: modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF). Among the APM samples, PFAS concentrations in PM1.0 and PM2.5 were significantly higher than those in PM10. In addition to long-chain PFAS, short-chain and emerging PFAS also exhibited high concentrations. Regarding the inhaled bioavailability of PFAS in APM, we found that PFAS generally had high inhalation bioavailability fractions (IBAFs) in both MGS and ALF. IBAFs for most PFAS reached equilibrium after 1-day incubation period, with the size of APM and hydrophobicity of PFAS influencing IBAFs in both MGS and ALF. The bioavailability of PFAS in ALF was generally higher than that in MGS. If the bioavailability of PFAS in APM with simulated lung fluids is not considered, the inhaled health risk of PFAS may be overestimated by 21-47% in the interstitial fluid of lung cells and by 17-33% in lung cells.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 11","pages":"462"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro inhaled bioavailability of particle-bound per- and polyfluoroalkyl substances: affecting factors and risk assessment.\",\"authors\":\"Bin Wang, Yiming Yao, Hongwen Sun\",\"doi\":\"10.1007/s10653-025-02763-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concerns regarding the inhaled risks of per- and polyfluoroalkyl substances (PFAS) in atmospheric particulate matter (APM) are continuously increasing. In this study, we collected APM of three sizes (PM1.0, PM2.5, and PM10) to investigate the bioavailability of PFAS. An in-vitro simulation method was employed using two simulated lung fluids: modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF). Among the APM samples, PFAS concentrations in PM1.0 and PM2.5 were significantly higher than those in PM10. In addition to long-chain PFAS, short-chain and emerging PFAS also exhibited high concentrations. Regarding the inhaled bioavailability of PFAS in APM, we found that PFAS generally had high inhalation bioavailability fractions (IBAFs) in both MGS and ALF. IBAFs for most PFAS reached equilibrium after 1-day incubation period, with the size of APM and hydrophobicity of PFAS influencing IBAFs in both MGS and ALF. The bioavailability of PFAS in ALF was generally higher than that in MGS. If the bioavailability of PFAS in APM with simulated lung fluids is not considered, the inhaled health risk of PFAS may be overestimated by 21-47% in the interstitial fluid of lung cells and by 17-33% in lung cells.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 11\",\"pages\":\"462\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02763-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02763-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
In-vitro inhaled bioavailability of particle-bound per- and polyfluoroalkyl substances: affecting factors and risk assessment.
Concerns regarding the inhaled risks of per- and polyfluoroalkyl substances (PFAS) in atmospheric particulate matter (APM) are continuously increasing. In this study, we collected APM of three sizes (PM1.0, PM2.5, and PM10) to investigate the bioavailability of PFAS. An in-vitro simulation method was employed using two simulated lung fluids: modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF). Among the APM samples, PFAS concentrations in PM1.0 and PM2.5 were significantly higher than those in PM10. In addition to long-chain PFAS, short-chain and emerging PFAS also exhibited high concentrations. Regarding the inhaled bioavailability of PFAS in APM, we found that PFAS generally had high inhalation bioavailability fractions (IBAFs) in both MGS and ALF. IBAFs for most PFAS reached equilibrium after 1-day incubation period, with the size of APM and hydrophobicity of PFAS influencing IBAFs in both MGS and ALF. The bioavailability of PFAS in ALF was generally higher than that in MGS. If the bioavailability of PFAS in APM with simulated lung fluids is not considered, the inhaled health risk of PFAS may be overestimated by 21-47% in the interstitial fluid of lung cells and by 17-33% in lung cells.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.