R. V. Mungalov, N. S. Vand, D. M. Chudakov, E. A. Bryushkova
{"title":"现代实验室测试系统作为验证临床有希望的t细胞受体的平台","authors":"R. V. Mungalov, N. S. Vand, D. M. Chudakov, E. A. Bryushkova","doi":"10.1134/S1068162025601910","DOIUrl":null,"url":null,"abstract":"<p>The development of therapeutic antigen-specific T-cell receptors (TCRs) requires comprehensive preclinical validation of their functional activity. One of the approaches in the development of new drugs for cell therapy based on antigen-specific T lymphocytes is the modification of autologous T lymphocytes with endogenous T-cell receptors. The present work reviews modern laboratory platforms used to assess key TCR characteristics: immunological synapse formation, specificity and affinity of antigen binding, activation of signaling pathways, cytokine production and cytotoxic potential. Particular attention is paid to the creation of model T-cell lines expressing transgenic TCRs, optimization of HLA context of target cells and application of multiparametric technologies for immune response analysis. The prospects of using 3D organoid models for validation of functional activity of transgenic TCRs under conditions close to physiological ones, as well as for predicting their clinical efficacy are discussed. The presented approaches form the basis for rational selection of candidate receptors for their subsequent application in immunotherapy of tumors and chronic infections.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"51 5","pages":"1827 - 1837"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1068162025601910.pdf","citationCount":"0","resultStr":"{\"title\":\"Modern Laboratory Test-Systems as Platforms for Validation of Clinically Promising T-Cell Receptors\",\"authors\":\"R. V. Mungalov, N. S. Vand, D. M. Chudakov, E. A. Bryushkova\",\"doi\":\"10.1134/S1068162025601910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of therapeutic antigen-specific T-cell receptors (TCRs) requires comprehensive preclinical validation of their functional activity. One of the approaches in the development of new drugs for cell therapy based on antigen-specific T lymphocytes is the modification of autologous T lymphocytes with endogenous T-cell receptors. The present work reviews modern laboratory platforms used to assess key TCR characteristics: immunological synapse formation, specificity and affinity of antigen binding, activation of signaling pathways, cytokine production and cytotoxic potential. Particular attention is paid to the creation of model T-cell lines expressing transgenic TCRs, optimization of HLA context of target cells and application of multiparametric technologies for immune response analysis. The prospects of using 3D organoid models for validation of functional activity of transgenic TCRs under conditions close to physiological ones, as well as for predicting their clinical efficacy are discussed. The presented approaches form the basis for rational selection of candidate receptors for their subsequent application in immunotherapy of tumors and chronic infections.</p>\",\"PeriodicalId\":758,\"journal\":{\"name\":\"Russian Journal of Bioorganic Chemistry\",\"volume\":\"51 5\",\"pages\":\"1827 - 1837\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S1068162025601910.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1068162025601910\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162025601910","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Modern Laboratory Test-Systems as Platforms for Validation of Clinically Promising T-Cell Receptors
The development of therapeutic antigen-specific T-cell receptors (TCRs) requires comprehensive preclinical validation of their functional activity. One of the approaches in the development of new drugs for cell therapy based on antigen-specific T lymphocytes is the modification of autologous T lymphocytes with endogenous T-cell receptors. The present work reviews modern laboratory platforms used to assess key TCR characteristics: immunological synapse formation, specificity and affinity of antigen binding, activation of signaling pathways, cytokine production and cytotoxic potential. Particular attention is paid to the creation of model T-cell lines expressing transgenic TCRs, optimization of HLA context of target cells and application of multiparametric technologies for immune response analysis. The prospects of using 3D organoid models for validation of functional activity of transgenic TCRs under conditions close to physiological ones, as well as for predicting their clinical efficacy are discussed. The presented approaches form the basis for rational selection of candidate receptors for their subsequent application in immunotherapy of tumors and chronic infections.
期刊介绍:
Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.