Chuanwen Sun, Wei Li, Ahmad Serjouei, Cheng Li, Rui Sun, Ibrahim Elbugdady, Yuzhe Jin
{"title":"增材制造高温合金变幅载荷下的高温疲劳行为与显微组织累积损伤评价","authors":"Chuanwen Sun, Wei Li, Ahmad Serjouei, Cheng Li, Rui Sun, Ibrahim Elbugdady, Yuzhe Jin","doi":"10.1016/j.ijfatigue.2025.109305","DOIUrl":null,"url":null,"abstract":"Fatigue properties under service conditions are a critical barrier to the reliable application of additive manufacturing (AM) metals. Yet, the associated damage mechanisms and life evaluation approaches, particularly at long term, elevated temperature and variable amplitude (VA) loading, are almost unclear. To address these, high and very-high cycle fatigue VA tests and meso-microscale analyses were performed to investigate damage mechanism of a laser powder bed fused superalloy with heat treatment at service temperature of 650 °C, and a microstructure based cumulative damage evaluation approach was proposed. Results show that interior failures characterized by defect-assisted faceted cracking are predominant. VA loading tends to sequentially activate multiple defects, resulting in competitive multi-site crack nucleation. Increased stress levels accelerate crack growth, leading to the formation of localized rough growth areas and crack deflection. Both primary and secondary cracks grow transgranularly, with crack paths showing negligible dependence on grain orientation. The interior crack nucleation and growth mechanisms under VA loading are elucidated. A cumulative damage evaluation model incorporating the remaining life factor, correlation function transformation, and a reconstructed stress-life relationship was developed, with the prediction results being in close accord with the experimental data under VA loading. These findings provide new insights into the interior crack nucleation and growth mechanisms in AM superalloys and offer a predictive framework for fatigue life estimation under realistic service conditions.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"61 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated-temperature fatigue behavior and microstructure based cumulative damage evaluation of additive manufacturing superalloy under variable amplitude loading\",\"authors\":\"Chuanwen Sun, Wei Li, Ahmad Serjouei, Cheng Li, Rui Sun, Ibrahim Elbugdady, Yuzhe Jin\",\"doi\":\"10.1016/j.ijfatigue.2025.109305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue properties under service conditions are a critical barrier to the reliable application of additive manufacturing (AM) metals. Yet, the associated damage mechanisms and life evaluation approaches, particularly at long term, elevated temperature and variable amplitude (VA) loading, are almost unclear. To address these, high and very-high cycle fatigue VA tests and meso-microscale analyses were performed to investigate damage mechanism of a laser powder bed fused superalloy with heat treatment at service temperature of 650 °C, and a microstructure based cumulative damage evaluation approach was proposed. Results show that interior failures characterized by defect-assisted faceted cracking are predominant. VA loading tends to sequentially activate multiple defects, resulting in competitive multi-site crack nucleation. Increased stress levels accelerate crack growth, leading to the formation of localized rough growth areas and crack deflection. Both primary and secondary cracks grow transgranularly, with crack paths showing negligible dependence on grain orientation. The interior crack nucleation and growth mechanisms under VA loading are elucidated. A cumulative damage evaluation model incorporating the remaining life factor, correlation function transformation, and a reconstructed stress-life relationship was developed, with the prediction results being in close accord with the experimental data under VA loading. These findings provide new insights into the interior crack nucleation and growth mechanisms in AM superalloys and offer a predictive framework for fatigue life estimation under realistic service conditions.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2025.109305\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2025.109305","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Elevated-temperature fatigue behavior and microstructure based cumulative damage evaluation of additive manufacturing superalloy under variable amplitude loading
Fatigue properties under service conditions are a critical barrier to the reliable application of additive manufacturing (AM) metals. Yet, the associated damage mechanisms and life evaluation approaches, particularly at long term, elevated temperature and variable amplitude (VA) loading, are almost unclear. To address these, high and very-high cycle fatigue VA tests and meso-microscale analyses were performed to investigate damage mechanism of a laser powder bed fused superalloy with heat treatment at service temperature of 650 °C, and a microstructure based cumulative damage evaluation approach was proposed. Results show that interior failures characterized by defect-assisted faceted cracking are predominant. VA loading tends to sequentially activate multiple defects, resulting in competitive multi-site crack nucleation. Increased stress levels accelerate crack growth, leading to the formation of localized rough growth areas and crack deflection. Both primary and secondary cracks grow transgranularly, with crack paths showing negligible dependence on grain orientation. The interior crack nucleation and growth mechanisms under VA loading are elucidated. A cumulative damage evaluation model incorporating the remaining life factor, correlation function transformation, and a reconstructed stress-life relationship was developed, with the prediction results being in close accord with the experimental data under VA loading. These findings provide new insights into the interior crack nucleation and growth mechanisms in AM superalloys and offer a predictive framework for fatigue life estimation under realistic service conditions.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.