基于节奏的分层预测计算支持语音处理中的声-语义转换。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Olesia Dogonasheva, Keith B Doelling, Denis Zakharov, Anne-Lise Giraud, Boris Gutkin
{"title":"基于节奏的分层预测计算支持语音处理中的声-语义转换。","authors":"Olesia Dogonasheva, Keith B Doelling, Denis Zakharov, Anne-Lise Giraud, Boris Gutkin","doi":"10.1038/s43588-025-00876-9","DOIUrl":null,"url":null,"abstract":"<p><p>Unraveling how humans understand speech despite distortions has long intrigued researchers. A prominent hypothesis highlights the role of multiple endogenous brain rhythms in forming the computational context to predict speech structure and content. Yet how neural processes may implement rhythm-based context formation remains unclear. Here we propose the brain rhythm-based inference model (BRyBI) as a possible neural implementation of speech processing in the auditory cortex based on the interaction of endogenous brain rhythms in a predictive coding framework. BRyBI encodes key rhythmic processes for parsing spectro-temporal representations of the speech signal into phoneme sequences and to govern the formation of the phrasal context. BRyBI matches patterns of human performance in speech recognition tasks and explains contradictory experimental observations of rhythms during speech listening and their dependence on the informational aspect of speech (uncertainty and surprise). This work highlights the computational role of multiscale brain rhythms in predictive speech processing.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhythm-based hierarchical predictive computations support acoustic-semantic transformation in speech processing.\",\"authors\":\"Olesia Dogonasheva, Keith B Doelling, Denis Zakharov, Anne-Lise Giraud, Boris Gutkin\",\"doi\":\"10.1038/s43588-025-00876-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unraveling how humans understand speech despite distortions has long intrigued researchers. A prominent hypothesis highlights the role of multiple endogenous brain rhythms in forming the computational context to predict speech structure and content. Yet how neural processes may implement rhythm-based context formation remains unclear. Here we propose the brain rhythm-based inference model (BRyBI) as a possible neural implementation of speech processing in the auditory cortex based on the interaction of endogenous brain rhythms in a predictive coding framework. BRyBI encodes key rhythmic processes for parsing spectro-temporal representations of the speech signal into phoneme sequences and to govern the formation of the phrasal context. BRyBI matches patterns of human performance in speech recognition tasks and explains contradictory experimental observations of rhythms during speech listening and their dependence on the informational aspect of speech (uncertainty and surprise). This work highlights the computational role of multiscale brain rhythms in predictive speech processing.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00876-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00876-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,研究人员一直好奇人类是如何在扭曲的情况下理解语言的。一个突出的假设强调了多种内源性大脑节律在形成预测语音结构和内容的计算环境中的作用。然而,神经过程如何实现基于节奏的上下文形成仍不清楚。在此,我们提出基于脑节奏的推理模型(BRyBI)作为一种基于内源性脑节奏在预测编码框架中的相互作用的听觉皮层语音处理的可能神经实现。BRyBI对关键的节奏过程进行编码,以将语音信号的光谱时间表征解析为音素序列,并控制短语上下文的形成。BRyBI与人类在语音识别任务中的表现模式相匹配,并解释了语音听力过程中节奏的矛盾实验观察及其对语音信息方面(不确定性和惊喜)的依赖。这项工作强调了多尺度脑节律在预测语音处理中的计算作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rhythm-based hierarchical predictive computations support acoustic-semantic transformation in speech processing.

Unraveling how humans understand speech despite distortions has long intrigued researchers. A prominent hypothesis highlights the role of multiple endogenous brain rhythms in forming the computational context to predict speech structure and content. Yet how neural processes may implement rhythm-based context formation remains unclear. Here we propose the brain rhythm-based inference model (BRyBI) as a possible neural implementation of speech processing in the auditory cortex based on the interaction of endogenous brain rhythms in a predictive coding framework. BRyBI encodes key rhythmic processes for parsing spectro-temporal representations of the speech signal into phoneme sequences and to govern the formation of the phrasal context. BRyBI matches patterns of human performance in speech recognition tasks and explains contradictory experimental observations of rhythms during speech listening and their dependence on the informational aspect of speech (uncertainty and surprise). This work highlights the computational role of multiscale brain rhythms in predictive speech processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信