通过跨组织和单细胞景观的表观基因组整合预测非编码变异对基因表达的调控影响。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhe Liu, Yihang Bao, An Gu, Weichen Song, Guan Ning Lin
{"title":"通过跨组织和单细胞景观的表观基因组整合预测非编码变异对基因表达的调控影响。","authors":"Zhe Liu, Yihang Bao, An Gu, Weichen Song, Guan Ning Lin","doi":"10.1038/s43588-025-00878-7","DOIUrl":null,"url":null,"abstract":"<p><p>Noncoding mutations play a critical role in regulating gene expression, yet predicting their effects across diverse tissues and cell types remains a challenge. Here we present EMO, a transformer-based model that integrates DNA sequence with chromatin accessibility data (assay for transposase-accessible chromatin with sequencing) to predict the regulatory impact of noncoding single nucleotide polymorphisms on gene expression. A key component of EMO is its ability to incorporate personalized functional genomic profiles, enabling individual-level and disease-contextual predictions and addressing critical limitations of current approaches. EMO generalizes across tissues and cell types by modeling both short- and long-range regulatory interactions and capturing dynamic gene expression changes associated with disease progression. In benchmark evaluations, the pretraining-based EMO framework outperformed existing models, with fine-tuning small-sample tissues enhancing the model's ability to fit target tissues. In single-cell contexts, EMO accurately identified cell-type-specific regulatory patterns and successfully captured the effects of disease-associated single nucleotide polymorphisms in conditions, linking genetic variation to disease-relevant pathways.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the regulatory impacts of noncoding variants on gene expression through epigenomic integration across tissues and single-cell landscapes.\",\"authors\":\"Zhe Liu, Yihang Bao, An Gu, Weichen Song, Guan Ning Lin\",\"doi\":\"10.1038/s43588-025-00878-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noncoding mutations play a critical role in regulating gene expression, yet predicting their effects across diverse tissues and cell types remains a challenge. Here we present EMO, a transformer-based model that integrates DNA sequence with chromatin accessibility data (assay for transposase-accessible chromatin with sequencing) to predict the regulatory impact of noncoding single nucleotide polymorphisms on gene expression. A key component of EMO is its ability to incorporate personalized functional genomic profiles, enabling individual-level and disease-contextual predictions and addressing critical limitations of current approaches. EMO generalizes across tissues and cell types by modeling both short- and long-range regulatory interactions and capturing dynamic gene expression changes associated with disease progression. In benchmark evaluations, the pretraining-based EMO framework outperformed existing models, with fine-tuning small-sample tissues enhancing the model's ability to fit target tissues. In single-cell contexts, EMO accurately identified cell-type-specific regulatory patterns and successfully captured the effects of disease-associated single nucleotide polymorphisms in conditions, linking genetic variation to disease-relevant pathways.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00878-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00878-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

非编码突变在调节基因表达中起着至关重要的作用,然而预测它们在不同组织和细胞类型中的作用仍然是一个挑战。在这里,我们提出了EMO,这是一种基于转换器的模型,将DNA序列与染色质可接近性数据(转座酶可接近染色质的测定与测序)整合在一起,以预测非编码单核苷酸多态性对基因表达的调节影响。EMO的一个关键组成部分是其整合个性化功能基因组图谱的能力,能够实现个体水平和疾病背景预测,并解决当前方法的关键局限性。EMO通过模拟短期和长期的调节相互作用以及捕捉与疾病进展相关的动态基因表达变化,从而推广到各种组织和细胞类型。在基准评估中,基于预训练的EMO框架优于现有模型,微调小样本组织增强了模型拟合目标组织的能力。在单细胞环境下,EMO准确识别细胞类型特异性调节模式,并成功捕获疾病相关单核苷酸多态性在条件下的影响,将遗传变异与疾病相关途径联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the regulatory impacts of noncoding variants on gene expression through epigenomic integration across tissues and single-cell landscapes.

Noncoding mutations play a critical role in regulating gene expression, yet predicting their effects across diverse tissues and cell types remains a challenge. Here we present EMO, a transformer-based model that integrates DNA sequence with chromatin accessibility data (assay for transposase-accessible chromatin with sequencing) to predict the regulatory impact of noncoding single nucleotide polymorphisms on gene expression. A key component of EMO is its ability to incorporate personalized functional genomic profiles, enabling individual-level and disease-contextual predictions and addressing critical limitations of current approaches. EMO generalizes across tissues and cell types by modeling both short- and long-range regulatory interactions and capturing dynamic gene expression changes associated with disease progression. In benchmark evaluations, the pretraining-based EMO framework outperformed existing models, with fine-tuning small-sample tissues enhancing the model's ability to fit target tissues. In single-cell contexts, EMO accurately identified cell-type-specific regulatory patterns and successfully captured the effects of disease-associated single nucleotide polymorphisms in conditions, linking genetic variation to disease-relevant pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信