Zhe Liu, Yihang Bao, An Gu, Weichen Song, Guan Ning Lin
{"title":"通过跨组织和单细胞景观的表观基因组整合预测非编码变异对基因表达的调控影响。","authors":"Zhe Liu, Yihang Bao, An Gu, Weichen Song, Guan Ning Lin","doi":"10.1038/s43588-025-00878-7","DOIUrl":null,"url":null,"abstract":"<p><p>Noncoding mutations play a critical role in regulating gene expression, yet predicting their effects across diverse tissues and cell types remains a challenge. Here we present EMO, a transformer-based model that integrates DNA sequence with chromatin accessibility data (assay for transposase-accessible chromatin with sequencing) to predict the regulatory impact of noncoding single nucleotide polymorphisms on gene expression. A key component of EMO is its ability to incorporate personalized functional genomic profiles, enabling individual-level and disease-contextual predictions and addressing critical limitations of current approaches. EMO generalizes across tissues and cell types by modeling both short- and long-range regulatory interactions and capturing dynamic gene expression changes associated with disease progression. In benchmark evaluations, the pretraining-based EMO framework outperformed existing models, with fine-tuning small-sample tissues enhancing the model's ability to fit target tissues. In single-cell contexts, EMO accurately identified cell-type-specific regulatory patterns and successfully captured the effects of disease-associated single nucleotide polymorphisms in conditions, linking genetic variation to disease-relevant pathways.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the regulatory impacts of noncoding variants on gene expression through epigenomic integration across tissues and single-cell landscapes.\",\"authors\":\"Zhe Liu, Yihang Bao, An Gu, Weichen Song, Guan Ning Lin\",\"doi\":\"10.1038/s43588-025-00878-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noncoding mutations play a critical role in regulating gene expression, yet predicting their effects across diverse tissues and cell types remains a challenge. Here we present EMO, a transformer-based model that integrates DNA sequence with chromatin accessibility data (assay for transposase-accessible chromatin with sequencing) to predict the regulatory impact of noncoding single nucleotide polymorphisms on gene expression. A key component of EMO is its ability to incorporate personalized functional genomic profiles, enabling individual-level and disease-contextual predictions and addressing critical limitations of current approaches. EMO generalizes across tissues and cell types by modeling both short- and long-range regulatory interactions and capturing dynamic gene expression changes associated with disease progression. In benchmark evaluations, the pretraining-based EMO framework outperformed existing models, with fine-tuning small-sample tissues enhancing the model's ability to fit target tissues. In single-cell contexts, EMO accurately identified cell-type-specific regulatory patterns and successfully captured the effects of disease-associated single nucleotide polymorphisms in conditions, linking genetic variation to disease-relevant pathways.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00878-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00878-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Predicting the regulatory impacts of noncoding variants on gene expression through epigenomic integration across tissues and single-cell landscapes.
Noncoding mutations play a critical role in regulating gene expression, yet predicting their effects across diverse tissues and cell types remains a challenge. Here we present EMO, a transformer-based model that integrates DNA sequence with chromatin accessibility data (assay for transposase-accessible chromatin with sequencing) to predict the regulatory impact of noncoding single nucleotide polymorphisms on gene expression. A key component of EMO is its ability to incorporate personalized functional genomic profiles, enabling individual-level and disease-contextual predictions and addressing critical limitations of current approaches. EMO generalizes across tissues and cell types by modeling both short- and long-range regulatory interactions and capturing dynamic gene expression changes associated with disease progression. In benchmark evaluations, the pretraining-based EMO framework outperformed existing models, with fine-tuning small-sample tissues enhancing the model's ability to fit target tissues. In single-cell contexts, EMO accurately identified cell-type-specific regulatory patterns and successfully captured the effects of disease-associated single nucleotide polymorphisms in conditions, linking genetic variation to disease-relevant pathways.