CASP16中基于多msa策略和结构聚类的深度学习替代构象预测

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiqige Wuyun, Quancheng Liu, Wentao Ni, Chunxiang Peng, Ziying Zhang, Xiaogen Zhou, Gang Hu, Lydia Freddolino, Wei Zheng
{"title":"CASP16中基于多msa策略和结构聚类的深度学习替代构象预测","authors":"Qiqige Wuyun, Quancheng Liu, Wentao Ni, Chunxiang Peng, Ziying Zhang, Xiaogen Zhou, Gang Hu, Lydia Freddolino, Wei Zheng","doi":"10.1002/prot.70059","DOIUrl":null,"url":null,"abstract":"<p><p>We report the results from the \"MIEnsembles-Server\" and \"Zheng\" groups for structure ensemble predictions in CASP16, both of which employed the EnsembleFold pipeline. Initially, multiple sequence alignments (MSAs) were generated using DeepMSA2 for proteins and rMSA for RNA targets. These MSAs were processed by newly developed deep learning methods-D-I-TASSER2 for protein monomer structure prediction, DMFold2 for protein complex structure prediction, ExFold for RNA structure prediction, and DeepProtNA for protein-nucleic acid complex structure prediction-to yield diverse structural decoys. The generated decoys were clustered into representative models corresponding to distinct conformational states using the structural clustering tool MolClust. Protein monomer targets underwent additional refinement via replica-exchange Monte Carlo (REMC) simulations with D-I-TASSER2, and these refined decoys were re-clustered with MolClust to finalize the ensemble predictions. For the 19 ensemble targets in CASP16, the final EnsembleFold models achieved an average TM-score of 0.657, representing improvements of 10.2% compared to the baseline AlphaFold3 program. Notably, EnsembleFold achieved particularly good performance for hybrid protein/nucleic-acid targets, leading to its efficacy in ensemble prediction tasks. Analysis of the resulting structural ensembles highlighted three significant insights: (i) Models derived from distinct DeepMSA2-generated MSAs typically represent different conformational states for ensemble targets; (ii) REMC simulations significantly enhance model diversity, facilitating the identification of alternative conformations; (iii) The structural clustering approach effectively identifies and selects accurate representative models for each conformational state. We further discuss potential improvements in Quality Assessment (QA) scoring methods that could further enhance the reliability and accuracy of ensemble predictions in the future.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative Conformation Prediction Using Deep Learning With Multi-MSA Strategy and Structural Clustering in CASP16.\",\"authors\":\"Qiqige Wuyun, Quancheng Liu, Wentao Ni, Chunxiang Peng, Ziying Zhang, Xiaogen Zhou, Gang Hu, Lydia Freddolino, Wei Zheng\",\"doi\":\"10.1002/prot.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report the results from the \\\"MIEnsembles-Server\\\" and \\\"Zheng\\\" groups for structure ensemble predictions in CASP16, both of which employed the EnsembleFold pipeline. Initially, multiple sequence alignments (MSAs) were generated using DeepMSA2 for proteins and rMSA for RNA targets. These MSAs were processed by newly developed deep learning methods-D-I-TASSER2 for protein monomer structure prediction, DMFold2 for protein complex structure prediction, ExFold for RNA structure prediction, and DeepProtNA for protein-nucleic acid complex structure prediction-to yield diverse structural decoys. The generated decoys were clustered into representative models corresponding to distinct conformational states using the structural clustering tool MolClust. Protein monomer targets underwent additional refinement via replica-exchange Monte Carlo (REMC) simulations with D-I-TASSER2, and these refined decoys were re-clustered with MolClust to finalize the ensemble predictions. For the 19 ensemble targets in CASP16, the final EnsembleFold models achieved an average TM-score of 0.657, representing improvements of 10.2% compared to the baseline AlphaFold3 program. Notably, EnsembleFold achieved particularly good performance for hybrid protein/nucleic-acid targets, leading to its efficacy in ensemble prediction tasks. Analysis of the resulting structural ensembles highlighted three significant insights: (i) Models derived from distinct DeepMSA2-generated MSAs typically represent different conformational states for ensemble targets; (ii) REMC simulations significantly enhance model diversity, facilitating the identification of alternative conformations; (iii) The structural clustering approach effectively identifies and selects accurate representative models for each conformational state. We further discuss potential improvements in Quality Assessment (QA) scoring methods that could further enhance the reliability and accuracy of ensemble predictions in the future.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70059\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了“MIEnsembles-Server”和“Zheng”小组在CASP16中进行结构集成预测的结果,两者都使用了EnsembleFold管道。最初,使用DeepMSA2对蛋白质和rMSA对RNA靶标生成多个序列比对(msa)。这些msa通过新开发的深度学习方法(d - i - tasser2用于蛋白质单体结构预测,DMFold2用于蛋白质复合体结构预测,ExFold用于RNA结构预测,DeepProtNA用于蛋白质-核酸复合体结构预测)进行处理,以产生不同的结构诱饵。使用结构聚类工具MolClust将生成的诱饵聚类到不同构象状态对应的代表性模型中。蛋白质单体靶标通过D-I-TASSER2的复制交换蒙特卡罗(REMC)模拟进行了进一步的改进,这些改进的诱饵用MolClust重新聚类,最终完成了集合预测。对于CASP16中的19个集成目标,最终的EnsembleFold模型实现了0.657的平均tm得分,与基线AlphaFold3程序相比,提高了10.2%。值得注意的是,EnsembleFold在杂交蛋白/核酸靶点上取得了特别好的性能,因此它在集成预测任务中非常有效。对结果结构集成的分析突出了三个重要的见解:(i)来自不同deepmsa2生成的msa的模型通常代表了集成目标的不同构象状态;(ii) REMC模拟显著增强了模型多样性,促进了替代构象的识别;(iii)结构聚类方法有效地识别和选择每个构象状态的准确代表模型。我们进一步讨论了质量评估(QA)评分方法的潜在改进,这些方法可以在未来进一步提高集合预测的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative Conformation Prediction Using Deep Learning With Multi-MSA Strategy and Structural Clustering in CASP16.

We report the results from the "MIEnsembles-Server" and "Zheng" groups for structure ensemble predictions in CASP16, both of which employed the EnsembleFold pipeline. Initially, multiple sequence alignments (MSAs) were generated using DeepMSA2 for proteins and rMSA for RNA targets. These MSAs were processed by newly developed deep learning methods-D-I-TASSER2 for protein monomer structure prediction, DMFold2 for protein complex structure prediction, ExFold for RNA structure prediction, and DeepProtNA for protein-nucleic acid complex structure prediction-to yield diverse structural decoys. The generated decoys were clustered into representative models corresponding to distinct conformational states using the structural clustering tool MolClust. Protein monomer targets underwent additional refinement via replica-exchange Monte Carlo (REMC) simulations with D-I-TASSER2, and these refined decoys were re-clustered with MolClust to finalize the ensemble predictions. For the 19 ensemble targets in CASP16, the final EnsembleFold models achieved an average TM-score of 0.657, representing improvements of 10.2% compared to the baseline AlphaFold3 program. Notably, EnsembleFold achieved particularly good performance for hybrid protein/nucleic-acid targets, leading to its efficacy in ensemble prediction tasks. Analysis of the resulting structural ensembles highlighted three significant insights: (i) Models derived from distinct DeepMSA2-generated MSAs typically represent different conformational states for ensemble targets; (ii) REMC simulations significantly enhance model diversity, facilitating the identification of alternative conformations; (iii) The structural clustering approach effectively identifies and selects accurate representative models for each conformational state. We further discuss potential improvements in Quality Assessment (QA) scoring methods that could further enhance the reliability and accuracy of ensemble predictions in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信