Viliana Gugleva, Katerina Ahchiyska, Elena Drakalska-Sersemova, Rositsa Mihaylova, Natalia Toncheva-Moncheva, Erik Dimitrov, Krum Aleksandrov, Aleksander Forys, Barbara Trzebicka, Denitsa Momekova
{"title":"作为柔红霉素递送平台的热敏膜体的设计与表征。","authors":"Viliana Gugleva, Katerina Ahchiyska, Elena Drakalska-Sersemova, Rositsa Mihaylova, Natalia Toncheva-Moncheva, Erik Dimitrov, Krum Aleksandrov, Aleksander Forys, Barbara Trzebicka, Denitsa Momekova","doi":"10.3390/ph18091375","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The study describes the elaboration and evaluation of thermosensitive niosomes intended for the systemic application of daunorubicin hydrochloride. The attained stimulus sensitivity would determine the release of the chemotherapeutic predominantly at the target site, which ensures a higher drug concentration and leads to reduced systemic toxicity. The latter is highly beneficial, as the anthracycline antibiotic is known for its dose-dependent cardiotoxic effects. <b>Methods</b>: Conventional and copolymer-modified niosomes were prepared via thin-film hydration and the transmembrane ammonium gradient method, allowing us to assess the impacts of copolymer type-DHP-PiPOX (1,3-dihexadecyl-propane-2-ol-poly(2-isopropyl-2-oxazoline)) or DHP-PETEGA (1,3-dihexadecyl-propane-2-ol-poly(ethoxytriethylene glycol acrylate)) and their concentrations (0.5, 1, and 2.5 mol%), as well as the method of preparation, on the main physicochemical properties of the vesicles. Niosomes were characterized in terms of their size, polydispersity index (PDI), zeta potential, entrapment efficiency, morphology, and drug release properties. Thermosensitivity was evaluated by fluorescence studies, and the antiproliferative activity of optimized formulations was assessed against the acute myelocyte leukemia-derived HL-60 cell line. <b>Results</b>: Daunorubicin-loaded niosomes modified with DHP-PiPOX and DHP-PETEGA at 2.5 mol% exhibited suitable physicochemical properties for systemic application, with sizes below 200 nm (155 and 158 nm respectively), low PDI values of 0.25 and 0.29, spherical morphology, and high daunorubicin entrapment efficiency (68.6 and 66.5% respectively). The vesicles showed temperature-dependent drug release properties and superior antiproliferative activity compared to the free daunorubicin (IC<sub>50</sub> values of 6.91 and 8.54 vs. 12.14). <b>Conclusions</b>: The obtained results indicate that the developed thermosensitive nanovesicles may serve as a suitable drug delivery system for the systemic application of daunorubicin hydrochloride.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and Characterization of Thermosensitive Niosomes as Platforms for Daunorubicin Delivery.\",\"authors\":\"Viliana Gugleva, Katerina Ahchiyska, Elena Drakalska-Sersemova, Rositsa Mihaylova, Natalia Toncheva-Moncheva, Erik Dimitrov, Krum Aleksandrov, Aleksander Forys, Barbara Trzebicka, Denitsa Momekova\",\"doi\":\"10.3390/ph18091375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> The study describes the elaboration and evaluation of thermosensitive niosomes intended for the systemic application of daunorubicin hydrochloride. The attained stimulus sensitivity would determine the release of the chemotherapeutic predominantly at the target site, which ensures a higher drug concentration and leads to reduced systemic toxicity. The latter is highly beneficial, as the anthracycline antibiotic is known for its dose-dependent cardiotoxic effects. <b>Methods</b>: Conventional and copolymer-modified niosomes were prepared via thin-film hydration and the transmembrane ammonium gradient method, allowing us to assess the impacts of copolymer type-DHP-PiPOX (1,3-dihexadecyl-propane-2-ol-poly(2-isopropyl-2-oxazoline)) or DHP-PETEGA (1,3-dihexadecyl-propane-2-ol-poly(ethoxytriethylene glycol acrylate)) and their concentrations (0.5, 1, and 2.5 mol%), as well as the method of preparation, on the main physicochemical properties of the vesicles. Niosomes were characterized in terms of their size, polydispersity index (PDI), zeta potential, entrapment efficiency, morphology, and drug release properties. Thermosensitivity was evaluated by fluorescence studies, and the antiproliferative activity of optimized formulations was assessed against the acute myelocyte leukemia-derived HL-60 cell line. <b>Results</b>: Daunorubicin-loaded niosomes modified with DHP-PiPOX and DHP-PETEGA at 2.5 mol% exhibited suitable physicochemical properties for systemic application, with sizes below 200 nm (155 and 158 nm respectively), low PDI values of 0.25 and 0.29, spherical morphology, and high daunorubicin entrapment efficiency (68.6 and 66.5% respectively). The vesicles showed temperature-dependent drug release properties and superior antiproliferative activity compared to the free daunorubicin (IC<sub>50</sub> values of 6.91 and 8.54 vs. 12.14). <b>Conclusions</b>: The obtained results indicate that the developed thermosensitive nanovesicles may serve as a suitable drug delivery system for the systemic application of daunorubicin hydrochloride.</p>\",\"PeriodicalId\":20198,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph18091375\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18091375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design and Characterization of Thermosensitive Niosomes as Platforms for Daunorubicin Delivery.
Background/Objectives: The study describes the elaboration and evaluation of thermosensitive niosomes intended for the systemic application of daunorubicin hydrochloride. The attained stimulus sensitivity would determine the release of the chemotherapeutic predominantly at the target site, which ensures a higher drug concentration and leads to reduced systemic toxicity. The latter is highly beneficial, as the anthracycline antibiotic is known for its dose-dependent cardiotoxic effects. Methods: Conventional and copolymer-modified niosomes were prepared via thin-film hydration and the transmembrane ammonium gradient method, allowing us to assess the impacts of copolymer type-DHP-PiPOX (1,3-dihexadecyl-propane-2-ol-poly(2-isopropyl-2-oxazoline)) or DHP-PETEGA (1,3-dihexadecyl-propane-2-ol-poly(ethoxytriethylene glycol acrylate)) and their concentrations (0.5, 1, and 2.5 mol%), as well as the method of preparation, on the main physicochemical properties of the vesicles. Niosomes were characterized in terms of their size, polydispersity index (PDI), zeta potential, entrapment efficiency, morphology, and drug release properties. Thermosensitivity was evaluated by fluorescence studies, and the antiproliferative activity of optimized formulations was assessed against the acute myelocyte leukemia-derived HL-60 cell line. Results: Daunorubicin-loaded niosomes modified with DHP-PiPOX and DHP-PETEGA at 2.5 mol% exhibited suitable physicochemical properties for systemic application, with sizes below 200 nm (155 and 158 nm respectively), low PDI values of 0.25 and 0.29, spherical morphology, and high daunorubicin entrapment efficiency (68.6 and 66.5% respectively). The vesicles showed temperature-dependent drug release properties and superior antiproliferative activity compared to the free daunorubicin (IC50 values of 6.91 and 8.54 vs. 12.14). Conclusions: The obtained results indicate that the developed thermosensitive nanovesicles may serve as a suitable drug delivery system for the systemic application of daunorubicin hydrochloride.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.