Sebastian Górecki, Agnieszka Kudelko, Monika Olesiejuk
{"title":"1,3,4-噻二唑衍生物的抗菌活性。","authors":"Sebastian Górecki, Agnieszka Kudelko, Monika Olesiejuk","doi":"10.3390/ph18091348","DOIUrl":null,"url":null,"abstract":"<p><p>The 1,3,4-thiadiazole core has attracted significant attention due to its unique electronic structure, physicochemical properties, and wide-ranging pharmacological potential. This heterocyclic scaffold exhibits a broad spectrum of biological activities, often attributed to its capacity to modulate enzyme function, interact with receptors, and disrupt key biochemical pathways in both pathogens and host cells. Additionally, 1,3,4-thiadiazoles typically display favorable pharmacokinetic properties, including high metabolic stability and appropriate lipophilicity, which enhance their drug-likeness and bioavailability. This review presents an overview of antibacterial and antifungal compounds bearing the 1,3,4-thiadiazole scaffold that have been reported over the past five years. This publication details the chemical structures of novel 1,3,4-thiadiazole derivatives and reports the results of antibacterial and antifungal activity assays conducted against a range of microbial strains. Furthermore, it provides conclusions regarding the structural features that influence the observed biological activity of the synthesized compounds. Antimicrobial activity assessments conducted against ten Gram-negative and nine Gram-positive bacterial strains revealed that 79 newly synthesized 1,3,4-thiadiazole derivatives exhibited either superior inhibitory efficacy relative to standard reference antibiotics or achieved a high level of bacterial growth suppression, defined as 90-100% inhibition. In antifungal assays, the compounds were evaluated against 25 fungal species representing 15 genera. Among the tested derivatives, 75 compounds demonstrated antifungal potency exceeding that of reference antifungal agents or produced growth inhibition within the 90-100% range. The information provided herein may serve as a valuable resource for medicinal and agricultural chemists engaged in the development of novel drug candidates and plant protection agents.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472209/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Activity of 1,3,4-Thiadiazole Derivatives.\",\"authors\":\"Sebastian Górecki, Agnieszka Kudelko, Monika Olesiejuk\",\"doi\":\"10.3390/ph18091348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 1,3,4-thiadiazole core has attracted significant attention due to its unique electronic structure, physicochemical properties, and wide-ranging pharmacological potential. This heterocyclic scaffold exhibits a broad spectrum of biological activities, often attributed to its capacity to modulate enzyme function, interact with receptors, and disrupt key biochemical pathways in both pathogens and host cells. Additionally, 1,3,4-thiadiazoles typically display favorable pharmacokinetic properties, including high metabolic stability and appropriate lipophilicity, which enhance their drug-likeness and bioavailability. This review presents an overview of antibacterial and antifungal compounds bearing the 1,3,4-thiadiazole scaffold that have been reported over the past five years. This publication details the chemical structures of novel 1,3,4-thiadiazole derivatives and reports the results of antibacterial and antifungal activity assays conducted against a range of microbial strains. Furthermore, it provides conclusions regarding the structural features that influence the observed biological activity of the synthesized compounds. Antimicrobial activity assessments conducted against ten Gram-negative and nine Gram-positive bacterial strains revealed that 79 newly synthesized 1,3,4-thiadiazole derivatives exhibited either superior inhibitory efficacy relative to standard reference antibiotics or achieved a high level of bacterial growth suppression, defined as 90-100% inhibition. In antifungal assays, the compounds were evaluated against 25 fungal species representing 15 genera. Among the tested derivatives, 75 compounds demonstrated antifungal potency exceeding that of reference antifungal agents or produced growth inhibition within the 90-100% range. The information provided herein may serve as a valuable resource for medicinal and agricultural chemists engaged in the development of novel drug candidates and plant protection agents.</p>\",\"PeriodicalId\":20198,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph18091348\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18091348","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Antimicrobial Activity of 1,3,4-Thiadiazole Derivatives.
The 1,3,4-thiadiazole core has attracted significant attention due to its unique electronic structure, physicochemical properties, and wide-ranging pharmacological potential. This heterocyclic scaffold exhibits a broad spectrum of biological activities, often attributed to its capacity to modulate enzyme function, interact with receptors, and disrupt key biochemical pathways in both pathogens and host cells. Additionally, 1,3,4-thiadiazoles typically display favorable pharmacokinetic properties, including high metabolic stability and appropriate lipophilicity, which enhance their drug-likeness and bioavailability. This review presents an overview of antibacterial and antifungal compounds bearing the 1,3,4-thiadiazole scaffold that have been reported over the past five years. This publication details the chemical structures of novel 1,3,4-thiadiazole derivatives and reports the results of antibacterial and antifungal activity assays conducted against a range of microbial strains. Furthermore, it provides conclusions regarding the structural features that influence the observed biological activity of the synthesized compounds. Antimicrobial activity assessments conducted against ten Gram-negative and nine Gram-positive bacterial strains revealed that 79 newly synthesized 1,3,4-thiadiazole derivatives exhibited either superior inhibitory efficacy relative to standard reference antibiotics or achieved a high level of bacterial growth suppression, defined as 90-100% inhibition. In antifungal assays, the compounds were evaluated against 25 fungal species representing 15 genera. Among the tested derivatives, 75 compounds demonstrated antifungal potency exceeding that of reference antifungal agents or produced growth inhibition within the 90-100% range. The information provided herein may serve as a valuable resource for medicinal and agricultural chemists engaged in the development of novel drug candidates and plant protection agents.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.