小分子蛋白酶抑制剂作为模拟肽的模型。

IF 4.8 3区 医学 Q2 CHEMISTRY, MEDICINAL
Pharmaceuticals Pub Date : 2025-09-15 DOI:10.3390/ph18091377
Patricia Gomez-Gutierrez, Juan J Perez
{"title":"小分子蛋白酶抑制剂作为模拟肽的模型。","authors":"Patricia Gomez-Gutierrez, Juan J Perez","doi":"10.3390/ph18091377","DOIUrl":null,"url":null,"abstract":"<p><p>Proteases constitute one of the largest sub-classes of enzymes, accounting for ca. 2% of the proteins encoded in the human genome. They play a key role in protein degradation and signaling, regulating a variety of physiological processes. Dysregulation of their activity is associated with various pathological conditions like cancer, neurodegenerative disorders, inflammatory or cardiovascular diseases. Protease activity can be controlled by regulating enzyme concentrations, but also by inhibitors, molecules that modulate enzyme function, inspiring the development of small molecule protease inhibitors for therapeutic purposes. Protease inhibitors can be designed from the corresponding substrates by isostere replacement at the scissile bond. This process yields a first-generation of inhibitors that usually exhibit poor drug-like profiles that need subsequently be improved to generate a second-generation, by smoothing their peptide-like features. This process is reviewed in the present report and exemplified in the successful discovery stories of different inhibitors that correspond to four types of proteases, including the angiotensin converting enzyme (metalloprotease); HIV protease (aspartate protease); thrombin (serine protease) and the proteasome (threonine protease). A detailed description of the stories behind their design from their initial discovery to the final product is described in this report. Moreover, despite successful discovery stories, the challenges associated with designing novel protease inhibitors are examined. Finally, the relevance of these drugs in the present drug market is also reported.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472456/pdf/","citationCount":"0","resultStr":"{\"title\":\"Small Molecule Protease Inhibitors as Model Peptidomimetics.\",\"authors\":\"Patricia Gomez-Gutierrez, Juan J Perez\",\"doi\":\"10.3390/ph18091377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteases constitute one of the largest sub-classes of enzymes, accounting for ca. 2% of the proteins encoded in the human genome. They play a key role in protein degradation and signaling, regulating a variety of physiological processes. Dysregulation of their activity is associated with various pathological conditions like cancer, neurodegenerative disorders, inflammatory or cardiovascular diseases. Protease activity can be controlled by regulating enzyme concentrations, but also by inhibitors, molecules that modulate enzyme function, inspiring the development of small molecule protease inhibitors for therapeutic purposes. Protease inhibitors can be designed from the corresponding substrates by isostere replacement at the scissile bond. This process yields a first-generation of inhibitors that usually exhibit poor drug-like profiles that need subsequently be improved to generate a second-generation, by smoothing their peptide-like features. This process is reviewed in the present report and exemplified in the successful discovery stories of different inhibitors that correspond to four types of proteases, including the angiotensin converting enzyme (metalloprotease); HIV protease (aspartate protease); thrombin (serine protease) and the proteasome (threonine protease). A detailed description of the stories behind their design from their initial discovery to the final product is described in this report. Moreover, despite successful discovery stories, the challenges associated with designing novel protease inhibitors are examined. Finally, the relevance of these drugs in the present drug market is also reported.</p>\",\"PeriodicalId\":20198,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph18091377\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18091377","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

蛋白酶是酶的最大亚类之一,约占人类基因组编码蛋白质的2%。它们在蛋白质降解和信号传导中发挥关键作用,调节多种生理过程。它们活动的失调与各种病理状况有关,如癌症、神经退行性疾病、炎症或心血管疾病。蛋白酶活性可以通过调节酶浓度来控制,但也可以通过抑制剂,调节酶功能的分子来控制,这激发了用于治疗目的的小分子蛋白酶抑制剂的开发。蛋白酶抑制剂可以从相应的底物通过在可剪切键上的等异体置换来设计。这一过程产生的第一代抑制剂通常表现出较差的药物样特征,随后需要通过平滑其肽样特征来改进以产生第二代抑制剂。本报告回顾了这一过程,并举例说明了四种类型蛋白酶对应的不同抑制剂的成功发现故事,包括血管紧张素转换酶(金属蛋白酶);HIV蛋白酶(天冬氨酸蛋白酶);凝血酶(丝氨酸蛋白酶)和蛋白酶体(苏氨酸蛋白酶)。本报告详细描述了他们从最初的发现到最终产品的设计背后的故事。此外,尽管有成功的发现故事,但与设计新型蛋白酶抑制剂相关的挑战也得到了检验。最后,还报告了这些药物在当前药品市场中的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Molecule Protease Inhibitors as Model Peptidomimetics.

Proteases constitute one of the largest sub-classes of enzymes, accounting for ca. 2% of the proteins encoded in the human genome. They play a key role in protein degradation and signaling, regulating a variety of physiological processes. Dysregulation of their activity is associated with various pathological conditions like cancer, neurodegenerative disorders, inflammatory or cardiovascular diseases. Protease activity can be controlled by regulating enzyme concentrations, but also by inhibitors, molecules that modulate enzyme function, inspiring the development of small molecule protease inhibitors for therapeutic purposes. Protease inhibitors can be designed from the corresponding substrates by isostere replacement at the scissile bond. This process yields a first-generation of inhibitors that usually exhibit poor drug-like profiles that need subsequently be improved to generate a second-generation, by smoothing their peptide-like features. This process is reviewed in the present report and exemplified in the successful discovery stories of different inhibitors that correspond to four types of proteases, including the angiotensin converting enzyme (metalloprotease); HIV protease (aspartate protease); thrombin (serine protease) and the proteasome (threonine protease). A detailed description of the stories behind their design from their initial discovery to the final product is described in this report. Moreover, despite successful discovery stories, the challenges associated with designing novel protease inhibitors are examined. Finally, the relevance of these drugs in the present drug market is also reported.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信