Yanting Lei, Jing Yu, Xinrui Huo, Zhaoying Li, Jing Wang, Yixiang Jiang, Ying Yu, Yan Huang, Wenkang Jiang, Jiangtian Tian, Dan Kong, Yumei Liu, Xijun Liu, Xiujuan Lang, Hulun Li, Bo Sun
{"title":"lnccbadr通过结合mcc1和Pcca调节BCAAs降解,促进T细胞介导的自身免疫。","authors":"Yanting Lei, Jing Yu, Xinrui Huo, Zhaoying Li, Jing Wang, Yixiang Jiang, Ying Yu, Yan Huang, Wenkang Jiang, Jiangtian Tian, Dan Kong, Yumei Liu, Xijun Liu, Xiujuan Lang, Hulun Li, Bo Sun","doi":"10.1186/s12974-025-03538-9","DOIUrl":null,"url":null,"abstract":"<p><p>T cell dysfunction is a pivotal driving factor in autoimmune diseases, yet its underlying regulatory mechanisms remain incompletely understood. The role of long non-coding RNAs (lncRNAs) in immune regulation has gradually been recognized, although their functional mechanisms in T cells remain elusive. This study focuses on lncBADR (LncRNA Branched-chain Amino acids Degradation Regulator), elucidating its mechanism by which it regulates branched-chain amino acids (BCAAs) metabolism to influence T cell effector functions. Mice with specific knockout of lncBADR (T cell<sup>lncBADR-/-</sup>) exhibited markedly ameliorated experimental autoimmune encephalomyelitis (EAE) symptoms. Mechanistic investigations revealed that lncBADR inhibits BCAAs degradation by binding to the enzymes Mccc1 and Pcca, leading to the accumulation of BCAAs within T-cells. This, in turn, activates the mTOR-Stat1 signaling pathway, promoting IFN-γ secretion and exacerbating EAE pathology. In contrast, knockout of lncBADR restored BCAAs degradation, significantly reducing IFN-γ secretion in T cells and suppressing their pathogenic functions. Further studies demonstrated that high-BCAAs feeding partially reversed the protective effects of lncBADR knockout, indicating that lncBADR plays a crucial role in autoimmune inflammation by regulating BCAAs metabolism. This study offers new insights into targeting lncBADR or modulating BCAAs metabolism as potential therapeutic strategies for autoimmune diseases.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"213"},"PeriodicalIF":10.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465721/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncBADR promotes T cell-mediated autoimmunity by binding Mccc1 and Pcca to regulate BCAAs degradation.\",\"authors\":\"Yanting Lei, Jing Yu, Xinrui Huo, Zhaoying Li, Jing Wang, Yixiang Jiang, Ying Yu, Yan Huang, Wenkang Jiang, Jiangtian Tian, Dan Kong, Yumei Liu, Xijun Liu, Xiujuan Lang, Hulun Li, Bo Sun\",\"doi\":\"10.1186/s12974-025-03538-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T cell dysfunction is a pivotal driving factor in autoimmune diseases, yet its underlying regulatory mechanisms remain incompletely understood. The role of long non-coding RNAs (lncRNAs) in immune regulation has gradually been recognized, although their functional mechanisms in T cells remain elusive. This study focuses on lncBADR (LncRNA Branched-chain Amino acids Degradation Regulator), elucidating its mechanism by which it regulates branched-chain amino acids (BCAAs) metabolism to influence T cell effector functions. Mice with specific knockout of lncBADR (T cell<sup>lncBADR-/-</sup>) exhibited markedly ameliorated experimental autoimmune encephalomyelitis (EAE) symptoms. Mechanistic investigations revealed that lncBADR inhibits BCAAs degradation by binding to the enzymes Mccc1 and Pcca, leading to the accumulation of BCAAs within T-cells. This, in turn, activates the mTOR-Stat1 signaling pathway, promoting IFN-γ secretion and exacerbating EAE pathology. In contrast, knockout of lncBADR restored BCAAs degradation, significantly reducing IFN-γ secretion in T cells and suppressing their pathogenic functions. Further studies demonstrated that high-BCAAs feeding partially reversed the protective effects of lncBADR knockout, indicating that lncBADR plays a crucial role in autoimmune inflammation by regulating BCAAs metabolism. This study offers new insights into targeting lncBADR or modulating BCAAs metabolism as potential therapeutic strategies for autoimmune diseases.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"213\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03538-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03538-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
LncBADR promotes T cell-mediated autoimmunity by binding Mccc1 and Pcca to regulate BCAAs degradation.
T cell dysfunction is a pivotal driving factor in autoimmune diseases, yet its underlying regulatory mechanisms remain incompletely understood. The role of long non-coding RNAs (lncRNAs) in immune regulation has gradually been recognized, although their functional mechanisms in T cells remain elusive. This study focuses on lncBADR (LncRNA Branched-chain Amino acids Degradation Regulator), elucidating its mechanism by which it regulates branched-chain amino acids (BCAAs) metabolism to influence T cell effector functions. Mice with specific knockout of lncBADR (T celllncBADR-/-) exhibited markedly ameliorated experimental autoimmune encephalomyelitis (EAE) symptoms. Mechanistic investigations revealed that lncBADR inhibits BCAAs degradation by binding to the enzymes Mccc1 and Pcca, leading to the accumulation of BCAAs within T-cells. This, in turn, activates the mTOR-Stat1 signaling pathway, promoting IFN-γ secretion and exacerbating EAE pathology. In contrast, knockout of lncBADR restored BCAAs degradation, significantly reducing IFN-γ secretion in T cells and suppressing their pathogenic functions. Further studies demonstrated that high-BCAAs feeding partially reversed the protective effects of lncBADR knockout, indicating that lncBADR plays a crucial role in autoimmune inflammation by regulating BCAAs metabolism. This study offers new insights into targeting lncBADR or modulating BCAAs metabolism as potential therapeutic strategies for autoimmune diseases.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.