llm辅助动脉血气解释的人在环性能:一项单中心回顾性研究。

IF 2.9 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Sergio Ayala-De la Cruz, Paola Elizabeth Arenas-Hernández, María Fernanda Fernández-Herrera, Rebeca Alejandrina Quiñones-Díaz, Jorge Martín Llaca-Díaz, Erik Alejandro Díaz-Chuc, Diana Guadalupe Robles-Espino, Erik Alejandro San Miguel-Garay
{"title":"llm辅助动脉血气解释的人在环性能:一项单中心回顾性研究。","authors":"Sergio Ayala-De la Cruz, Paola Elizabeth Arenas-Hernández, María Fernanda Fernández-Herrera, Rebeca Alejandrina Quiñones-Díaz, Jorge Martín Llaca-Díaz, Erik Alejandro Díaz-Chuc, Diana Guadalupe Robles-Espino, Erik Alejandro San Miguel-Garay","doi":"10.3390/jcm14186676","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and Objectives</b>: Interpreting acid-base disorders is challenging, particularly in complex or mixed cases. Given the growing potential of large language models (LLMs) to assist in cognitively demanding tasks, this study evaluated their performance in interpreting arterial blood gas (ABG) results. <b>Materials and Methods</b>: In this single-center retrospective study, 200 ABG datasets were curated to include 40 cases in each of five diagnostic categories: metabolic acidosis, respiratory acidosis, metabolic alkalosis, respiratory alkalosis, and no acid-base disorder. Three medical students, each assigned to one LLM (ChatGPT GPT-4o, Copilot GPT-4, or Gemini 1.5-flash/2.5-flash), perform ABG interpretation using two evaluation methods: interpretation (LLM-I) and interpretation with supervision model (LLM-S). Two clinical pathologists independently performed the conventional evaluation to serve as the reference standard. <b>Results</b>: Agreement for identifying the primary acid-base (APD) disorder was strong across all approaches (Cohen's κ ≥ 0.88). For identifying both primary and secondary disorders regardless of order (APSD), LLM-I showed moderate agreement (ChatGPT κ = 0.65, Copilot κ = 0.61, Gemini κ = 0.62), whereas LLM-S achieved strong agreement (ChatGPT κ = 0.91, Copilot κ = 0.81, Gemini κ = 0.81). <b>Conclusions</b>: LLM-assisted ABG interpretation demonstrates strong concordance with expert interpretation in detecting primary acid-base disorders. These tools may enhance the understanding of acid-base disorders while reducing calculation-related errors among medical students.</p>","PeriodicalId":15533,"journal":{"name":"Journal of Clinical Medicine","volume":"14 18","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human-in-the-Loop Performance of LLM-Assisted Arterial Blood Gas Interpretation: A Single-Center Retrospective Study.\",\"authors\":\"Sergio Ayala-De la Cruz, Paola Elizabeth Arenas-Hernández, María Fernanda Fernández-Herrera, Rebeca Alejandrina Quiñones-Díaz, Jorge Martín Llaca-Díaz, Erik Alejandro Díaz-Chuc, Diana Guadalupe Robles-Espino, Erik Alejandro San Miguel-Garay\",\"doi\":\"10.3390/jcm14186676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background and Objectives</b>: Interpreting acid-base disorders is challenging, particularly in complex or mixed cases. Given the growing potential of large language models (LLMs) to assist in cognitively demanding tasks, this study evaluated their performance in interpreting arterial blood gas (ABG) results. <b>Materials and Methods</b>: In this single-center retrospective study, 200 ABG datasets were curated to include 40 cases in each of five diagnostic categories: metabolic acidosis, respiratory acidosis, metabolic alkalosis, respiratory alkalosis, and no acid-base disorder. Three medical students, each assigned to one LLM (ChatGPT GPT-4o, Copilot GPT-4, or Gemini 1.5-flash/2.5-flash), perform ABG interpretation using two evaluation methods: interpretation (LLM-I) and interpretation with supervision model (LLM-S). Two clinical pathologists independently performed the conventional evaluation to serve as the reference standard. <b>Results</b>: Agreement for identifying the primary acid-base (APD) disorder was strong across all approaches (Cohen's κ ≥ 0.88). For identifying both primary and secondary disorders regardless of order (APSD), LLM-I showed moderate agreement (ChatGPT κ = 0.65, Copilot κ = 0.61, Gemini κ = 0.62), whereas LLM-S achieved strong agreement (ChatGPT κ = 0.91, Copilot κ = 0.81, Gemini κ = 0.81). <b>Conclusions</b>: LLM-assisted ABG interpretation demonstrates strong concordance with expert interpretation in detecting primary acid-base disorders. These tools may enhance the understanding of acid-base disorders while reducing calculation-related errors among medical students.</p>\",\"PeriodicalId\":15533,\"journal\":{\"name\":\"Journal of Clinical Medicine\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jcm14186676\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcm14186676","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:解释酸碱失调是具有挑战性的,特别是在复杂或混合性病例中。鉴于大型语言模型(LLMs)在帮助认知要求高的任务方面的潜力越来越大,本研究评估了它们在解释动脉血气(ABG)结果方面的表现。材料和方法:在这项单中心回顾性研究中,收集了200个ABG数据集,包括代谢性酸中毒、呼吸性酸中毒、代谢性碱中毒、呼吸性碱中毒和无酸碱失调等5种诊断类别中的40例病例。三名医学生,每人分配一个LLM (ChatGPT gpt - 40, Copilot GPT-4或Gemini 1.5-flash/2.5-flash),使用两种评估方法进行ABG口译:口译(LLM- i)和监督模型口译(LLM- s)。两名临床病理学家独立进行常规评估,作为参考标准。结果:所有方法鉴别原发性酸碱(APD)障碍的一致性很强(Cohen’s κ≥0.88)。对于原发性和继发性疾病,LLM-I具有中等一致性(ChatGPT κ = 0.65, Copilot κ = 0.61, Gemini κ = 0.62),而LLM-S具有强一致性(ChatGPT κ = 0.91, Copilot κ = 0.81, Gemini κ = 0.81)。结论:llm辅助的ABG解释与专家解释在检测原发性酸碱疾病方面具有很强的一致性。这些工具可以提高对酸碱失调的理解,同时减少医学生计算相关的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Human-in-the-Loop Performance of LLM-Assisted Arterial Blood Gas Interpretation: A Single-Center Retrospective Study.

Human-in-the-Loop Performance of LLM-Assisted Arterial Blood Gas Interpretation: A Single-Center Retrospective Study.

Human-in-the-Loop Performance of LLM-Assisted Arterial Blood Gas Interpretation: A Single-Center Retrospective Study.

Human-in-the-Loop Performance of LLM-Assisted Arterial Blood Gas Interpretation: A Single-Center Retrospective Study.

Background and Objectives: Interpreting acid-base disorders is challenging, particularly in complex or mixed cases. Given the growing potential of large language models (LLMs) to assist in cognitively demanding tasks, this study evaluated their performance in interpreting arterial blood gas (ABG) results. Materials and Methods: In this single-center retrospective study, 200 ABG datasets were curated to include 40 cases in each of five diagnostic categories: metabolic acidosis, respiratory acidosis, metabolic alkalosis, respiratory alkalosis, and no acid-base disorder. Three medical students, each assigned to one LLM (ChatGPT GPT-4o, Copilot GPT-4, or Gemini 1.5-flash/2.5-flash), perform ABG interpretation using two evaluation methods: interpretation (LLM-I) and interpretation with supervision model (LLM-S). Two clinical pathologists independently performed the conventional evaluation to serve as the reference standard. Results: Agreement for identifying the primary acid-base (APD) disorder was strong across all approaches (Cohen's κ ≥ 0.88). For identifying both primary and secondary disorders regardless of order (APSD), LLM-I showed moderate agreement (ChatGPT κ = 0.65, Copilot κ = 0.61, Gemini κ = 0.62), whereas LLM-S achieved strong agreement (ChatGPT κ = 0.91, Copilot κ = 0.81, Gemini κ = 0.81). Conclusions: LLM-assisted ABG interpretation demonstrates strong concordance with expert interpretation in detecting primary acid-base disorders. These tools may enhance the understanding of acid-base disorders while reducing calculation-related errors among medical students.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Medicine
Journal of Clinical Medicine MEDICINE, GENERAL & INTERNAL-
CiteScore
5.70
自引率
7.70%
发文量
6468
审稿时长
16.32 days
期刊介绍: Journal of Clinical Medicine (ISSN 2077-0383), is an international scientific open access journal, providing a platform for advances in health care/clinical practices, the study of direct observation of patients and general medical research. This multi-disciplinary journal is aimed at a wide audience of medical researchers and healthcare professionals. Unique features of this journal: manuscripts regarding original research and ideas will be particularly welcomed.JCM also accepts reviews, communications, and short notes. There is no limit to publication length: our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信