双酚A及其衍生物(BPF和BPS)对真皮成纤维细胞氧化损伤和细胞凋亡的影响。

IF 2.8 4区 医学 Q3 TOXICOLOGY
Funda Keteci, Buket Bakan
{"title":"双酚A及其衍生物(BPF和BPS)对真皮成纤维细胞氧化损伤和细胞凋亡的影响。","authors":"Funda Keteci, Buket Bakan","doi":"10.1002/jat.4931","DOIUrl":null,"url":null,"abstract":"<p><p>This study provides the first comparative evaluation of Bisphenol A (BPA) and its derivatives, Bisphenol F (BPF) and Bisphenol S (BPS), with oxidative stress, lipid accumulation, and apoptosis levels in fibroblast cells. WST-1 and LDH assays revealed that while all compounds induced dose-dependent cytotoxic effects, BPA resulted in a more significant decrease in cellular viability compared with BPF and BPS. In addition, BPA demonstrated a more significant dose-dependent elevation in DCF fluorescence intensity, indicating a greater level of oxidative damage compared with BPF and BPS. Flow cytometry analyses showed that all bisphenols led to a decrease in cell viability in a dose-dependent manner, which correlated with an increase in the apoptosis and necrosis rate. All exposure groups of BPA, BPF, and BPS were determined to have diminished sizes and a more crescent nuclei morphology. Malondialdehyde (MDA) levels in the BPA group were significantly higher than in the BPF and BPS groups. The lipid droplets were markedly higher in the BPA group when compared with the BPF and BPS groups, indicating that the accumulation of neutral lipids was greater in BPA-treated fibroblast cells. These results uncover that both BPA and its analogues cause cellular toxicity, but their toxicity levels can vary. Accordingly, further studies are needed to elucidate further risk assessment categories.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Bisphenol A and Its Derivatives (BPF and BPS) on Oxidative Injury and Apoptosis in Dermal Fibroblasts.\",\"authors\":\"Funda Keteci, Buket Bakan\",\"doi\":\"10.1002/jat.4931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study provides the first comparative evaluation of Bisphenol A (BPA) and its derivatives, Bisphenol F (BPF) and Bisphenol S (BPS), with oxidative stress, lipid accumulation, and apoptosis levels in fibroblast cells. WST-1 and LDH assays revealed that while all compounds induced dose-dependent cytotoxic effects, BPA resulted in a more significant decrease in cellular viability compared with BPF and BPS. In addition, BPA demonstrated a more significant dose-dependent elevation in DCF fluorescence intensity, indicating a greater level of oxidative damage compared with BPF and BPS. Flow cytometry analyses showed that all bisphenols led to a decrease in cell viability in a dose-dependent manner, which correlated with an increase in the apoptosis and necrosis rate. All exposure groups of BPA, BPF, and BPS were determined to have diminished sizes and a more crescent nuclei morphology. Malondialdehyde (MDA) levels in the BPA group were significantly higher than in the BPF and BPS groups. The lipid droplets were markedly higher in the BPA group when compared with the BPF and BPS groups, indicating that the accumulation of neutral lipids was greater in BPA-treated fibroblast cells. These results uncover that both BPA and its analogues cause cellular toxicity, but their toxicity levels can vary. Accordingly, further studies are needed to elucidate further risk assessment categories.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jat.4931\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4931","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次比较了双酚A (BPA)及其衍生物双酚F (BPF)和双酚S (BPS)对成纤维细胞氧化应激、脂质积累和凋亡水平的影响。WST-1和LDH实验显示,虽然所有化合物都诱导了剂量依赖性的细胞毒性作用,但与BPF和BPS相比,BPA导致的细胞活力下降更为显著。此外,BPA在DCF荧光强度上表现出更显著的剂量依赖性升高,表明与BPF和BPS相比,BPA的氧化损伤水平更高。流式细胞术分析显示,所有双酚类物质均以剂量依赖的方式导致细胞活力降低,并与细胞凋亡和坏死率增加相关。BPA, BPF和BPS的所有暴露组都被确定为尺寸减小和更多的新月形核形态。BPA组丙二醛(MDA)水平显著高于BPF和BPS组。与BPF和BPS组相比,BPA组的脂滴明显增加,表明BPA处理的成纤维细胞中中性脂的积累更多。这些结果揭示了双酚a及其类似物都会引起细胞毒性,但它们的毒性水平是不同的。因此,需要进一步的研究来阐明进一步的风险评估类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Bisphenol A and Its Derivatives (BPF and BPS) on Oxidative Injury and Apoptosis in Dermal Fibroblasts.

This study provides the first comparative evaluation of Bisphenol A (BPA) and its derivatives, Bisphenol F (BPF) and Bisphenol S (BPS), with oxidative stress, lipid accumulation, and apoptosis levels in fibroblast cells. WST-1 and LDH assays revealed that while all compounds induced dose-dependent cytotoxic effects, BPA resulted in a more significant decrease in cellular viability compared with BPF and BPS. In addition, BPA demonstrated a more significant dose-dependent elevation in DCF fluorescence intensity, indicating a greater level of oxidative damage compared with BPF and BPS. Flow cytometry analyses showed that all bisphenols led to a decrease in cell viability in a dose-dependent manner, which correlated with an increase in the apoptosis and necrosis rate. All exposure groups of BPA, BPF, and BPS were determined to have diminished sizes and a more crescent nuclei morphology. Malondialdehyde (MDA) levels in the BPA group were significantly higher than in the BPF and BPS groups. The lipid droplets were markedly higher in the BPA group when compared with the BPF and BPS groups, indicating that the accumulation of neutral lipids was greater in BPA-treated fibroblast cells. These results uncover that both BPA and its analogues cause cellular toxicity, but their toxicity levels can vary. Accordingly, further studies are needed to elucidate further risk assessment categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信