脑胶质瘤中代谢和免疫亚型的综合多组学特征

IF 5.6 2区 医学 Q1 ONCOLOGY
JCO precision oncology Pub Date : 2025-09-01 Epub Date: 2025-09-26 DOI:10.1200/PO-24-00928
Jinwei Li, Zeya Yan, Yang Zhang, Jie Hu, Xuhui Hui, Jinnan Zhang, Rui Zhang, Tao Xin, Quan Liu, Yinyan Wang
{"title":"脑胶质瘤中代谢和免疫亚型的综合多组学特征","authors":"Jinwei Li, Zeya Yan, Yang Zhang, Jie Hu, Xuhui Hui, Jinnan Zhang, Rui Zhang, Tao Xin, Quan Liu, Yinyan Wang","doi":"10.1200/PO-24-00928","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Gliomas are aggressive CNS tumors with significant heterogeneity, posing challenges for effective treatment. This study aims to enhance glioma classification by integrating multi-omics data, including genomics and magnetic resonance imaging (MRI)-based radiomics, focusing on metabolic and immune subtypes.</p><p><strong>Methods: </strong>Transcriptome data from 1,720 patients with glioma were analyzed to identify key prognostic factors, including 42 metabolism-related genes and 25 immune cells. A metabolism-immune classifier was developed to categorize gliomas into four subgroups: Metabolism<sup>high</sup>/tumor microenvironment (TME)<sup>high</sup>, Metabolism<sup>low</sup>/TME<sup>high</sup>, Metabolism<sup>high</sup>/TME<sup>low</sup>, and Metabolism<sup>low</sup>/TME<sup>low</sup>. Multicohort MRI radiomics combined with machine learning algorithms were used to predict these subtypes. Single-cell RNA and spatial transcriptome sequencing were used to validate subgroups' metabolic and immunological characterization.</p><p><strong>Results: </strong>The Metabolism<sup>low</sup>/TME<sup>low</sup> subgroup showed the best prognosis, whereas the Metabolism<sup>high</sup>/TME<sup>high</sup> subgroup had the worst. Machine learning models can predict glioma subtypes noninvasively based on MRI radiomics. Single-cell RNA sequencing confirmed the distinct metabolic and immune profiles of the glioma subgroups, revealing significant cellular heterogeneity within the TME.</p><p><strong>Conclusion: </strong>This study demonstrates that integrating multi-omics data with MRI radiomics provides a robust framework for glioma classification, enabling more precise and personalized treatment strategies. The findings highlight the critical role of metabolic and immune profiling in understanding glioma heterogeneity and improving clinical outcomes.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"9 ","pages":"e2400928"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative Multi-Omics Features Stratify Metabolic and Immune Subtypes in Glioma.\",\"authors\":\"Jinwei Li, Zeya Yan, Yang Zhang, Jie Hu, Xuhui Hui, Jinnan Zhang, Rui Zhang, Tao Xin, Quan Liu, Yinyan Wang\",\"doi\":\"10.1200/PO-24-00928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Gliomas are aggressive CNS tumors with significant heterogeneity, posing challenges for effective treatment. This study aims to enhance glioma classification by integrating multi-omics data, including genomics and magnetic resonance imaging (MRI)-based radiomics, focusing on metabolic and immune subtypes.</p><p><strong>Methods: </strong>Transcriptome data from 1,720 patients with glioma were analyzed to identify key prognostic factors, including 42 metabolism-related genes and 25 immune cells. A metabolism-immune classifier was developed to categorize gliomas into four subgroups: Metabolism<sup>high</sup>/tumor microenvironment (TME)<sup>high</sup>, Metabolism<sup>low</sup>/TME<sup>high</sup>, Metabolism<sup>high</sup>/TME<sup>low</sup>, and Metabolism<sup>low</sup>/TME<sup>low</sup>. Multicohort MRI radiomics combined with machine learning algorithms were used to predict these subtypes. Single-cell RNA and spatial transcriptome sequencing were used to validate subgroups' metabolic and immunological characterization.</p><p><strong>Results: </strong>The Metabolism<sup>low</sup>/TME<sup>low</sup> subgroup showed the best prognosis, whereas the Metabolism<sup>high</sup>/TME<sup>high</sup> subgroup had the worst. Machine learning models can predict glioma subtypes noninvasively based on MRI radiomics. Single-cell RNA sequencing confirmed the distinct metabolic and immune profiles of the glioma subgroups, revealing significant cellular heterogeneity within the TME.</p><p><strong>Conclusion: </strong>This study demonstrates that integrating multi-omics data with MRI radiomics provides a robust framework for glioma classification, enabling more precise and personalized treatment strategies. The findings highlight the critical role of metabolic and immune profiling in understanding glioma heterogeneity and improving clinical outcomes.</p>\",\"PeriodicalId\":14797,\"journal\":{\"name\":\"JCO precision oncology\",\"volume\":\"9 \",\"pages\":\"e2400928\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO precision oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1200/PO-24-00928\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO-24-00928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:胶质瘤是侵袭性中枢神经系统肿瘤,具有显著的异质性,对有效治疗提出了挑战。本研究旨在通过整合多组学数据,包括基因组学和基于磁共振成像(MRI)的放射组学,重点关注代谢和免疫亚型,来增强胶质瘤的分类。方法:分析1,720例胶质瘤患者的转录组数据,以确定关键预后因素,包括42个代谢相关基因和25个免疫细胞。研究人员开发了一种代谢免疫分类器,将胶质瘤分为四个亚组:代谢高/肿瘤微环境(TME)高、代谢低/ tme高、代谢高/TMElow和代谢低/TMElow。多队列MRI放射组学结合机器学习算法预测这些亚型。单细胞RNA和空间转录组测序用于验证亚群的代谢和免疫学特征。结果:Metabolismlow/TMElow亚组预后最好,Metabolismhigh/TMEhigh亚组预后最差。机器学习模型可以基于MRI放射组学无创地预测胶质瘤亚型。单细胞RNA测序证实了胶质瘤亚群的独特代谢和免疫特征,揭示了TME内显著的细胞异质性。结论:本研究表明,将多组学数据与MRI放射组学相结合,为胶质瘤分类提供了一个强大的框架,从而实现更精确和个性化的治疗策略。这些发现强调了代谢和免疫谱在理解胶质瘤异质性和改善临床结果中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative Multi-Omics Features Stratify Metabolic and Immune Subtypes in Glioma.

Purpose: Gliomas are aggressive CNS tumors with significant heterogeneity, posing challenges for effective treatment. This study aims to enhance glioma classification by integrating multi-omics data, including genomics and magnetic resonance imaging (MRI)-based radiomics, focusing on metabolic and immune subtypes.

Methods: Transcriptome data from 1,720 patients with glioma were analyzed to identify key prognostic factors, including 42 metabolism-related genes and 25 immune cells. A metabolism-immune classifier was developed to categorize gliomas into four subgroups: Metabolismhigh/tumor microenvironment (TME)high, Metabolismlow/TMEhigh, Metabolismhigh/TMElow, and Metabolismlow/TMElow. Multicohort MRI radiomics combined with machine learning algorithms were used to predict these subtypes. Single-cell RNA and spatial transcriptome sequencing were used to validate subgroups' metabolic and immunological characterization.

Results: The Metabolismlow/TMElow subgroup showed the best prognosis, whereas the Metabolismhigh/TMEhigh subgroup had the worst. Machine learning models can predict glioma subtypes noninvasively based on MRI radiomics. Single-cell RNA sequencing confirmed the distinct metabolic and immune profiles of the glioma subgroups, revealing significant cellular heterogeneity within the TME.

Conclusion: This study demonstrates that integrating multi-omics data with MRI radiomics provides a robust framework for glioma classification, enabling more precise and personalized treatment strategies. The findings highlight the critical role of metabolic and immune profiling in understanding glioma heterogeneity and improving clinical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
4.30%
发文量
363
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信