{"title":"基因组分析揭示了杀珊瑚海绵(Terpios hoshinota)对环境胁迫的广泛适应性。","authors":"Po-Yu Liu, Wei-Chih Chiu, Sim Lin Lim, Hsing-Ju Chen, Yu-Hsiang Chen, Hsiang-Iu Wang, Cheng-Yu Yang, Chi-Chun Chen, Yoko Nozawa, Hideyuki Yamashiro, Kazuhiko Sakai, Sen-Lin Tang","doi":"10.1186/s12864-025-11962-7","DOIUrl":null,"url":null,"abstract":"<p><p>The coral-killing sponge, Terpios hoshinota, poses a significant ecological threat to coral reefs, exhibiting rapid expansion and competitive overgrowth. Despite its invasiveness, the genomic basis underlying its adaptability and resilience remains largely unexplored. Here, we present a high-quality genome assembly of T. hoshinota, comprising 169.4 Mb with 40,945 predicted genes. Phylogenomic analysis estimated its divergence from other demosponges during the Ordovician (~ 471 million years ago), even though its simple morphology suggests a more ancient evolutionary origin. Comparative genomic analyses revealed enrichment of genes related to substrate adhesion, innate immunity, and developmental pathways, including expansions of Wnt signaling, homeobox genes, and cell migration gene ontologies which may contribute to its aggressive growth and resilience. Transcriptomic responses under simulated climate stress conditions (heat stress at 31 °C and acidification at 700 ppm pCO₂) indicated dynamic gene regulation, with upregulation of neurotransmitter metabolism, cellular maintenance, and ion homeostasis responses. Despite these stressors, it remained stable. This suggests that T. hoshinota exhibits strong adaptability and resilience through rapid gene regulation. In conclusion, these findings provide molecular insights into T. hoshinota's ecological success, its potential expansion under climate change, and its broader impact on coral reef ecosystems.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"830"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465263/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic analysis reveals broad adaptability of coral-killing sponge (Terpios hoshinota) under environmental stress.\",\"authors\":\"Po-Yu Liu, Wei-Chih Chiu, Sim Lin Lim, Hsing-Ju Chen, Yu-Hsiang Chen, Hsiang-Iu Wang, Cheng-Yu Yang, Chi-Chun Chen, Yoko Nozawa, Hideyuki Yamashiro, Kazuhiko Sakai, Sen-Lin Tang\",\"doi\":\"10.1186/s12864-025-11962-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coral-killing sponge, Terpios hoshinota, poses a significant ecological threat to coral reefs, exhibiting rapid expansion and competitive overgrowth. Despite its invasiveness, the genomic basis underlying its adaptability and resilience remains largely unexplored. Here, we present a high-quality genome assembly of T. hoshinota, comprising 169.4 Mb with 40,945 predicted genes. Phylogenomic analysis estimated its divergence from other demosponges during the Ordovician (~ 471 million years ago), even though its simple morphology suggests a more ancient evolutionary origin. Comparative genomic analyses revealed enrichment of genes related to substrate adhesion, innate immunity, and developmental pathways, including expansions of Wnt signaling, homeobox genes, and cell migration gene ontologies which may contribute to its aggressive growth and resilience. Transcriptomic responses under simulated climate stress conditions (heat stress at 31 °C and acidification at 700 ppm pCO₂) indicated dynamic gene regulation, with upregulation of neurotransmitter metabolism, cellular maintenance, and ion homeostasis responses. Despite these stressors, it remained stable. This suggests that T. hoshinota exhibits strong adaptability and resilience through rapid gene regulation. In conclusion, these findings provide molecular insights into T. hoshinota's ecological success, its potential expansion under climate change, and its broader impact on coral reef ecosystems.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"830\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465263/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11962-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11962-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genomic analysis reveals broad adaptability of coral-killing sponge (Terpios hoshinota) under environmental stress.
The coral-killing sponge, Terpios hoshinota, poses a significant ecological threat to coral reefs, exhibiting rapid expansion and competitive overgrowth. Despite its invasiveness, the genomic basis underlying its adaptability and resilience remains largely unexplored. Here, we present a high-quality genome assembly of T. hoshinota, comprising 169.4 Mb with 40,945 predicted genes. Phylogenomic analysis estimated its divergence from other demosponges during the Ordovician (~ 471 million years ago), even though its simple morphology suggests a more ancient evolutionary origin. Comparative genomic analyses revealed enrichment of genes related to substrate adhesion, innate immunity, and developmental pathways, including expansions of Wnt signaling, homeobox genes, and cell migration gene ontologies which may contribute to its aggressive growth and resilience. Transcriptomic responses under simulated climate stress conditions (heat stress at 31 °C and acidification at 700 ppm pCO₂) indicated dynamic gene regulation, with upregulation of neurotransmitter metabolism, cellular maintenance, and ion homeostasis responses. Despite these stressors, it remained stable. This suggests that T. hoshinota exhibits strong adaptability and resilience through rapid gene regulation. In conclusion, these findings provide molecular insights into T. hoshinota's ecological success, its potential expansion under climate change, and its broader impact on coral reef ecosystems.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.