Yumin Wang, Shuang Wu, Xuan Zhang, Weihua Zheng, Zhiji Wang, Junjing Zhang, Jinxia Chen, Hongquan Wang
{"title":"cGAS-STING与自噬:串扰、分子机制和靶向治疗。","authors":"Yumin Wang, Shuang Wu, Xuan Zhang, Weihua Zheng, Zhiji Wang, Junjing Zhang, Jinxia Chen, Hongquan Wang","doi":"10.1007/s00204-025-04206-w","DOIUrl":null,"url":null,"abstract":"<p><p>The cytosolic DNA-sensing cGAS-STING pathway and autophagy represent two evolutionarily conserved systems critical for innate immunity and cellular homeostasis. The cGAS-STING pathway detects mislocalized DNA, triggering inflammation via interferon and cytokine production. Conversely, autophagy maintains equilibrium by degrading damaged organelles and pathogens. Crucially, these systems engage in reciprocal regulation: autophagy constrains cGAS-STING hyperactivity through lysosomal degradation of immunostimulatory DNA and STING itself, while cGAS-STING signaling induces autophagy via TBK1-mediated phosphorylation of autophagy adaptors to mitigate self-damage. Dysregulation of this interplay drives pathology. For instance, defective autophagy in systemic lupus erythematosus permits mitochondrial DNA accumulation and cGAS-driven interferonopathy, whereas persistent STING activation in cancers suppresses autophagic tumor surveillance. This review aims to dissect the molecular mechanisms underpinning their crosstalk, delineate its disruption in autoimmune, neurodegenerative, and oncological diseases, and critically evaluate emerging therapies designed to pharmacologically rebalance this axis. These include combining cGAS-STING inhibitors with autophagy enhancers to suppress inflammation in interferonopathies, and pairing STING agonists with autophagy inducers to potentiate antitumor immunity.By synthesizing preclinical and clinical advances, we establish a framework for developing context-specific therapeutics that exploit the cGAS-STING-autophagy circuit-translating mechanistic insights into precision treatments for immune dysregulation disorders.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"cGAS-STING and autophagy: crosstalk, molecular mechanisms, and targeted therapy.\",\"authors\":\"Yumin Wang, Shuang Wu, Xuan Zhang, Weihua Zheng, Zhiji Wang, Junjing Zhang, Jinxia Chen, Hongquan Wang\",\"doi\":\"10.1007/s00204-025-04206-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cytosolic DNA-sensing cGAS-STING pathway and autophagy represent two evolutionarily conserved systems critical for innate immunity and cellular homeostasis. The cGAS-STING pathway detects mislocalized DNA, triggering inflammation via interferon and cytokine production. Conversely, autophagy maintains equilibrium by degrading damaged organelles and pathogens. Crucially, these systems engage in reciprocal regulation: autophagy constrains cGAS-STING hyperactivity through lysosomal degradation of immunostimulatory DNA and STING itself, while cGAS-STING signaling induces autophagy via TBK1-mediated phosphorylation of autophagy adaptors to mitigate self-damage. Dysregulation of this interplay drives pathology. For instance, defective autophagy in systemic lupus erythematosus permits mitochondrial DNA accumulation and cGAS-driven interferonopathy, whereas persistent STING activation in cancers suppresses autophagic tumor surveillance. This review aims to dissect the molecular mechanisms underpinning their crosstalk, delineate its disruption in autoimmune, neurodegenerative, and oncological diseases, and critically evaluate emerging therapies designed to pharmacologically rebalance this axis. These include combining cGAS-STING inhibitors with autophagy enhancers to suppress inflammation in interferonopathies, and pairing STING agonists with autophagy inducers to potentiate antitumor immunity.By synthesizing preclinical and clinical advances, we establish a framework for developing context-specific therapeutics that exploit the cGAS-STING-autophagy circuit-translating mechanistic insights into precision treatments for immune dysregulation disorders.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-025-04206-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04206-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
cGAS-STING and autophagy: crosstalk, molecular mechanisms, and targeted therapy.
The cytosolic DNA-sensing cGAS-STING pathway and autophagy represent two evolutionarily conserved systems critical for innate immunity and cellular homeostasis. The cGAS-STING pathway detects mislocalized DNA, triggering inflammation via interferon and cytokine production. Conversely, autophagy maintains equilibrium by degrading damaged organelles and pathogens. Crucially, these systems engage in reciprocal regulation: autophagy constrains cGAS-STING hyperactivity through lysosomal degradation of immunostimulatory DNA and STING itself, while cGAS-STING signaling induces autophagy via TBK1-mediated phosphorylation of autophagy adaptors to mitigate self-damage. Dysregulation of this interplay drives pathology. For instance, defective autophagy in systemic lupus erythematosus permits mitochondrial DNA accumulation and cGAS-driven interferonopathy, whereas persistent STING activation in cancers suppresses autophagic tumor surveillance. This review aims to dissect the molecular mechanisms underpinning their crosstalk, delineate its disruption in autoimmune, neurodegenerative, and oncological diseases, and critically evaluate emerging therapies designed to pharmacologically rebalance this axis. These include combining cGAS-STING inhibitors with autophagy enhancers to suppress inflammation in interferonopathies, and pairing STING agonists with autophagy inducers to potentiate antitumor immunity.By synthesizing preclinical and clinical advances, we establish a framework for developing context-specific therapeutics that exploit the cGAS-STING-autophagy circuit-translating mechanistic insights into precision treatments for immune dysregulation disorders.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.