Hussein Sabit, Salma Abbas, Moataz T El-Safoury, Engy M Madkour, Sahar Mahmoud, Shaimaa Abdel-Ghany, Yasser Albrahim, Ibtesam S Al-Dhuayan, Sanaa Rashwan, Ahmed El-Hashash, Borros Arneth
{"title":"乳腺癌中的抗体-药物偶联物:导航创新,克服耐药性,塑造未来疗法。","authors":"Hussein Sabit, Salma Abbas, Moataz T El-Safoury, Engy M Madkour, Sahar Mahmoud, Shaimaa Abdel-Ghany, Yasser Albrahim, Ibtesam S Al-Dhuayan, Sanaa Rashwan, Ahmed El-Hashash, Borros Arneth","doi":"10.3390/biomedicines13092227","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) have revolutionized breast cancer (BC) therapy by combining targeted antibody specificity with potent cytotoxic payloads, thereby enhancing efficacy while minimizing systemic toxicity. This review highlights significant innovations driving ADC development alongside persistent challenges. Recent advancements include novel antibody-drug conjugate (ADC) designs targeting diverse antigens, such as HER2, HER3, and CD276, demonstrating potent anti-tumor activity and improved strategies for drug delivery. For instance, dual-payload ADCs and those leveraging extracellular vesicles offer new dimensions in precision oncology. The integration of ADCs into sequential therapy, such as sacituzumab govitecan with TOP1/PARP inhibitors, further underscores their synergistic potential. Despite these innovations, critical challenges remain, including tumor heterogeneity and acquired drug resistance, which often involve complex molecular alterations. Moreover, optimizing ADC components, including linker chemistry and payload characteristics, is essential for ensuring stability and minimizing off-target toxicity. The burgeoning role of artificial intelligence and machine learning is pivotal in accelerating the design of ADCs, target identification, and personalized patient stratification. This review aims to comprehensively explore the cutting-edge innovations and inherent challenges in ADC development for BC, providing a holistic perspective on their current impact and future trajectory.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibody-Drug Conjugates in Breast Cancer: Navigating Innovations, Overcoming Resistance, and Shaping Future Therapies.\",\"authors\":\"Hussein Sabit, Salma Abbas, Moataz T El-Safoury, Engy M Madkour, Sahar Mahmoud, Shaimaa Abdel-Ghany, Yasser Albrahim, Ibtesam S Al-Dhuayan, Sanaa Rashwan, Ahmed El-Hashash, Borros Arneth\",\"doi\":\"10.3390/biomedicines13092227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibody-drug conjugates (ADCs) have revolutionized breast cancer (BC) therapy by combining targeted antibody specificity with potent cytotoxic payloads, thereby enhancing efficacy while minimizing systemic toxicity. This review highlights significant innovations driving ADC development alongside persistent challenges. Recent advancements include novel antibody-drug conjugate (ADC) designs targeting diverse antigens, such as HER2, HER3, and CD276, demonstrating potent anti-tumor activity and improved strategies for drug delivery. For instance, dual-payload ADCs and those leveraging extracellular vesicles offer new dimensions in precision oncology. The integration of ADCs into sequential therapy, such as sacituzumab govitecan with TOP1/PARP inhibitors, further underscores their synergistic potential. Despite these innovations, critical challenges remain, including tumor heterogeneity and acquired drug resistance, which often involve complex molecular alterations. Moreover, optimizing ADC components, including linker chemistry and payload characteristics, is essential for ensuring stability and minimizing off-target toxicity. The burgeoning role of artificial intelligence and machine learning is pivotal in accelerating the design of ADCs, target identification, and personalized patient stratification. This review aims to comprehensively explore the cutting-edge innovations and inherent challenges in ADC development for BC, providing a holistic perspective on their current impact and future trajectory.</p>\",\"PeriodicalId\":8937,\"journal\":{\"name\":\"Biomedicines\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedicines13092227\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13092227","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antibody-Drug Conjugates in Breast Cancer: Navigating Innovations, Overcoming Resistance, and Shaping Future Therapies.
Antibody-drug conjugates (ADCs) have revolutionized breast cancer (BC) therapy by combining targeted antibody specificity with potent cytotoxic payloads, thereby enhancing efficacy while minimizing systemic toxicity. This review highlights significant innovations driving ADC development alongside persistent challenges. Recent advancements include novel antibody-drug conjugate (ADC) designs targeting diverse antigens, such as HER2, HER3, and CD276, demonstrating potent anti-tumor activity and improved strategies for drug delivery. For instance, dual-payload ADCs and those leveraging extracellular vesicles offer new dimensions in precision oncology. The integration of ADCs into sequential therapy, such as sacituzumab govitecan with TOP1/PARP inhibitors, further underscores their synergistic potential. Despite these innovations, critical challenges remain, including tumor heterogeneity and acquired drug resistance, which often involve complex molecular alterations. Moreover, optimizing ADC components, including linker chemistry and payload characteristics, is essential for ensuring stability and minimizing off-target toxicity. The burgeoning role of artificial intelligence and machine learning is pivotal in accelerating the design of ADCs, target identification, and personalized patient stratification. This review aims to comprehensively explore the cutting-edge innovations and inherent challenges in ADC development for BC, providing a holistic perspective on their current impact and future trajectory.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.