Babatunde Rabiu, Ali Kılçık, Ibiyinka Fuwape, Samuel Ogunjo
{"title":"第24太阳周期Dst指数值的复杂性","authors":"Babatunde Rabiu, Ali Kılçık, Ibiyinka Fuwape, Samuel Ogunjo","doi":"10.1007/s10509-025-04468-x","DOIUrl":null,"url":null,"abstract":"<div><p>The intrinsic nature of the magnetosphere is important in understanding the role of different drivers in its dynamics. In this study, an attempt was made to characterize and quantify the complexity in the magnetosphere during Solar Cycle 24 using the Dst index as a measure. Two approaches were considered: chaos and multifractal analysis. The chaotic analysis using the Lyapunov exponent, correlation dimension, and entropy measures revealed that the magnetosphere is chaotic for every year of Solar Cycle 24. Furthermore, there was no significant difference between the complexity in Solar Cycle 24 and the previous 4 solar cycles (20-23). Chaotic parameters (sample entropy, Lyapunov exponent, and correlation dimension) showed strong correlations with annual mean Dst values throughout Solar Cycle 24. Multifractal detrended fluctuation analysis parameters showed weak relationships with annual means but revealed underlying structures in Dst values.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity in Dst index values over Solar Cycle 24\",\"authors\":\"Babatunde Rabiu, Ali Kılçık, Ibiyinka Fuwape, Samuel Ogunjo\",\"doi\":\"10.1007/s10509-025-04468-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The intrinsic nature of the magnetosphere is important in understanding the role of different drivers in its dynamics. In this study, an attempt was made to characterize and quantify the complexity in the magnetosphere during Solar Cycle 24 using the Dst index as a measure. Two approaches were considered: chaos and multifractal analysis. The chaotic analysis using the Lyapunov exponent, correlation dimension, and entropy measures revealed that the magnetosphere is chaotic for every year of Solar Cycle 24. Furthermore, there was no significant difference between the complexity in Solar Cycle 24 and the previous 4 solar cycles (20-23). Chaotic parameters (sample entropy, Lyapunov exponent, and correlation dimension) showed strong correlations with annual mean Dst values throughout Solar Cycle 24. Multifractal detrended fluctuation analysis parameters showed weak relationships with annual means but revealed underlying structures in Dst values.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04468-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04468-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Complexity in Dst index values over Solar Cycle 24
The intrinsic nature of the magnetosphere is important in understanding the role of different drivers in its dynamics. In this study, an attempt was made to characterize and quantify the complexity in the magnetosphere during Solar Cycle 24 using the Dst index as a measure. Two approaches were considered: chaos and multifractal analysis. The chaotic analysis using the Lyapunov exponent, correlation dimension, and entropy measures revealed that the magnetosphere is chaotic for every year of Solar Cycle 24. Furthermore, there was no significant difference between the complexity in Solar Cycle 24 and the previous 4 solar cycles (20-23). Chaotic parameters (sample entropy, Lyapunov exponent, and correlation dimension) showed strong correlations with annual mean Dst values throughout Solar Cycle 24. Multifractal detrended fluctuation analysis parameters showed weak relationships with annual means but revealed underlying structures in Dst values.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.