voponnka的原理,最大解构性和单一生成的扭转类

IF 0.5 4区 数学 Q3 MATHEMATICS
Sean Cox
{"title":"voponnka的原理,最大解构性和单一生成的扭转类","authors":"Sean Cox","doi":"10.1007/s10485-025-09814-2","DOIUrl":null,"url":null,"abstract":"<div><p>Deconstructibility is an often-used sufficient condition on a class <span>\\(\\mathcal {C}\\)</span> of modules that allows one to carry out homological algebra <i>relative to </i> <span>\\(\\mathcal {C}\\)</span>. The principle <i>Maximum Deconstructibility (MD)</i> asserts that a certain necessary condition for a class to be deconstructible is also sufficient. MD implies, for example, that the classes of Gorenstein Projective modules, Ding Projective modules, their relativized variants, and all torsion classes are deconstructible over any ring. MD was known to follow from Vopěnka’s Principle and imply the existence of an <span>\\(\\omega _1\\)</span>-strongly compact cardinal. We prove that MD is equivalent to Vopěnka’s Principle, and to the assertion that each torsion class of abelian groups is generated by a single group within the class (yielding the converse of a theorem of Göbel and Shelah).</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-025-09814-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Vopěnka’s Principle, Maximum Deconstructibility, and Singly-Generated Torsion Classes\",\"authors\":\"Sean Cox\",\"doi\":\"10.1007/s10485-025-09814-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deconstructibility is an often-used sufficient condition on a class <span>\\\\(\\\\mathcal {C}\\\\)</span> of modules that allows one to carry out homological algebra <i>relative to </i> <span>\\\\(\\\\mathcal {C}\\\\)</span>. The principle <i>Maximum Deconstructibility (MD)</i> asserts that a certain necessary condition for a class to be deconstructible is also sufficient. MD implies, for example, that the classes of Gorenstein Projective modules, Ding Projective modules, their relativized variants, and all torsion classes are deconstructible over any ring. MD was known to follow from Vopěnka’s Principle and imply the existence of an <span>\\\\(\\\\omega _1\\\\)</span>-strongly compact cardinal. We prove that MD is equivalent to Vopěnka’s Principle, and to the assertion that each torsion class of abelian groups is generated by a single group within the class (yielding the converse of a theorem of Göbel and Shelah).</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-025-09814-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09814-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09814-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

解构性是一类\(\mathcal {C}\)模块上经常使用的充分条件,它允许人们执行相对于\(\mathcal {C}\)的同态代数。最大解构性原则(Maximum deconstructability, MD)认为,一个类具有可解构性的必要条件也是充分的。MD意味着,例如,Gorenstein射影模类,Ding射影模类,它们的相对变体,以及所有扭转类在任何环上都是可解构的。MD被认为是遵循沃普涅卡原理,并暗示\(\omega _1\) -强紧致基数的存在。我们证明了MD等价于voponnka原理,等价于每一个阿贝尔群的扭转类是由该类内的一个群生成的断言(得到Göbel和Shelah定理的逆)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vopěnka’s Principle, Maximum Deconstructibility, and Singly-Generated Torsion Classes

Deconstructibility is an often-used sufficient condition on a class \(\mathcal {C}\) of modules that allows one to carry out homological algebra relative to \(\mathcal {C}\). The principle Maximum Deconstructibility (MD) asserts that a certain necessary condition for a class to be deconstructible is also sufficient. MD implies, for example, that the classes of Gorenstein Projective modules, Ding Projective modules, their relativized variants, and all torsion classes are deconstructible over any ring. MD was known to follow from Vopěnka’s Principle and imply the existence of an \(\omega _1\)-strongly compact cardinal. We prove that MD is equivalent to Vopěnka’s Principle, and to the assertion that each torsion class of abelian groups is generated by a single group within the class (yielding the converse of a theorem of Göbel and Shelah).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信