{"title":"基于超声冲击条件下Ti-17钛合金微观组织分析的表面软化机理","authors":"Chang-Feng Yao, Wen-Hao Tang, Liang Tan, Min-Chao Cui, Yun-Qi Sun, Tao Fan, Xu-Hang Gao","doi":"10.1007/s40436-024-00525-w","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic impact significantly influences the mechanical properties and flow stress of Ti-17 titanium alloy. In this study, compression tests on Ti-17 titanium alloy were conducted under ultrasonic impact conditions, varying ultrasonic amplitudes and compression rates. The flow stress, surface elemental content, microhardness, and microstructure of Ti-17 titanium alloy were tested, and the softening mechanism of Ti-17 titanium alloy under ultrasonic impact conditions was investigated. The results indicate that the softening mechanism of Ti-17 titanium alloy involved ultrasonic softening combined with stress superposition. Ultrasonic impact leads to a higher distribution of grain orientation differences, alters the distribution of small-angle grain boundaries, and changes the distribution of surface phases, resulting in a reduced density of <i>α</i> phases. The geometrically necessary dislocation density at the surface increases, and the average grain size decreases from 2.91 μm to 2.73 μm. The Brass-type texture essentially disappears, transforming mainly into a Copper-type texture {112}<11-1>, with the maximum pole density decreasing from 73.98 to 39.88.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"13 3","pages":"562 - 583"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface softening mechanism based on microstructure analyses under ultrasonic impact condition for Ti-17 titanium alloy\",\"authors\":\"Chang-Feng Yao, Wen-Hao Tang, Liang Tan, Min-Chao Cui, Yun-Qi Sun, Tao Fan, Xu-Hang Gao\",\"doi\":\"10.1007/s40436-024-00525-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasonic impact significantly influences the mechanical properties and flow stress of Ti-17 titanium alloy. In this study, compression tests on Ti-17 titanium alloy were conducted under ultrasonic impact conditions, varying ultrasonic amplitudes and compression rates. The flow stress, surface elemental content, microhardness, and microstructure of Ti-17 titanium alloy were tested, and the softening mechanism of Ti-17 titanium alloy under ultrasonic impact conditions was investigated. The results indicate that the softening mechanism of Ti-17 titanium alloy involved ultrasonic softening combined with stress superposition. Ultrasonic impact leads to a higher distribution of grain orientation differences, alters the distribution of small-angle grain boundaries, and changes the distribution of surface phases, resulting in a reduced density of <i>α</i> phases. The geometrically necessary dislocation density at the surface increases, and the average grain size decreases from 2.91 μm to 2.73 μm. The Brass-type texture essentially disappears, transforming mainly into a Copper-type texture {112}<11-1>, with the maximum pole density decreasing from 73.98 to 39.88.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"13 3\",\"pages\":\"562 - 583\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00525-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00525-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Surface softening mechanism based on microstructure analyses under ultrasonic impact condition for Ti-17 titanium alloy
Ultrasonic impact significantly influences the mechanical properties and flow stress of Ti-17 titanium alloy. In this study, compression tests on Ti-17 titanium alloy were conducted under ultrasonic impact conditions, varying ultrasonic amplitudes and compression rates. The flow stress, surface elemental content, microhardness, and microstructure of Ti-17 titanium alloy were tested, and the softening mechanism of Ti-17 titanium alloy under ultrasonic impact conditions was investigated. The results indicate that the softening mechanism of Ti-17 titanium alloy involved ultrasonic softening combined with stress superposition. Ultrasonic impact leads to a higher distribution of grain orientation differences, alters the distribution of small-angle grain boundaries, and changes the distribution of surface phases, resulting in a reduced density of α phases. The geometrically necessary dislocation density at the surface increases, and the average grain size decreases from 2.91 μm to 2.73 μm. The Brass-type texture essentially disappears, transforming mainly into a Copper-type texture {112}<11-1>, with the maximum pole density decreasing from 73.98 to 39.88.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.