球中的Ricci捏紧紧子流形

IF 0.7 3区 数学 Q3 MATHEMATICS
Marcos Dajczer, Theodoros Vlachos
{"title":"球中的Ricci捏紧紧子流形","authors":"Marcos Dajczer,&nbsp;Theodoros Vlachos","doi":"10.1007/s10455-025-10007-2","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the topology of the compact submanifolds in round spheres that satisfy a lower bound on the Ricci curvature depending only on the length of the mean curvature vector of the immersion. Just in special cases, the limited strength of the assumption allows some strong additional information on the extrinsic geometry of the submanifold.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-10007-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Ricci pinched compact submanifolds in spheres\",\"authors\":\"Marcos Dajczer,&nbsp;Theodoros Vlachos\",\"doi\":\"10.1007/s10455-025-10007-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the topology of the compact submanifolds in round spheres that satisfy a lower bound on the Ricci curvature depending only on the length of the mean curvature vector of the immersion. Just in special cases, the limited strength of the assumption allows some strong additional information on the extrinsic geometry of the submanifold.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-10007-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10007-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10007-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了球面上紧致子流形的拓扑结构,这些子流形满足里奇曲率的下界,仅依赖于浸入的平均曲率向量的长度。只是在特殊情况下,假设的有限强度允许关于子流形的外在几何的一些强有力的附加信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ricci pinched compact submanifolds in spheres

We investigate the topology of the compact submanifolds in round spheres that satisfy a lower bound on the Ricci curvature depending only on the length of the mean curvature vector of the immersion. Just in special cases, the limited strength of the assumption allows some strong additional information on the extrinsic geometry of the submanifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信