Bursa L6球粒陨石的物理和热性能:密度、孔隙度、比热、含水量、导热性和热扩散率结果的组合

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Cisem Altunayar-Unsalan, Ozan Unsalan, Radosław A. Wach, Marian A. Szurgot
{"title":"Bursa L6球粒陨石的物理和热性能:密度、孔隙度、比热、含水量、导热性和热扩散率结果的组合","authors":"Cisem Altunayar-Unsalan,&nbsp;Ozan Unsalan,&nbsp;Radosław A. Wach,&nbsp;Marian A. Szurgot","doi":"10.1007/s10509-025-04443-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the first integrated analysis of the Bursa L6 chondrite’s thermophysical properties using 3D laser scanning, pycnometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The meteorite exhibits a bulk density of 3.476 g/cm<sup>3</sup>, a grain density of 3.69 g/cm<sup>3</sup>, and porosity of 5.80%. DSC revealed the presence of troilite (FeS) with <span>\\(\\alpha /\\beta \\)</span> and <span>\\(\\beta /\\gamma \\)</span> phase transition shifts across different regions, indicating a temperature gradient during atmospheric entry, with a calculated troilite content of 4.59 wt.%. Specific heat capacity was found to be 740 ± 33 Jkg<sup>−1</sup>K<sup>−1</sup> at room temperature, while volumetric heat capacity ranged from 1.90 ± 0.11 MJ/(m<sup>3</sup>K) at 200 K and 2.57 1.90 ± 0.11 MJ/(m<sup>3</sup>K) at 300 K. The atom-molar heat capacity increased from 12.64 J/(molK) to 17.41 J/(molK) across the same temperature range. Thermal diffusivity was estimated to be 1.25 ± 0.36⋅10<sup>−6</sup> m<sup>2</sup>s<sup>−1</sup> in air and 0.71 ± 0.03⋅10<sup>−6</sup> m<sup>2</sup>s<sup>−1</sup> in a vacuum. Thermal conductivity is 2.6 ± 0.6 Wm<sup>−1</sup>K<sup>−1</sup> in air and 1.8 ± 0.2 Wm<sup>−1</sup>K<sup>−1</sup> in vacuum at 300 K for both. Thermal inertia predicted for vacuum is equal to 1.84 ± 0.14 ⋅ 10<sup>3</sup> Js<sup>−1/2</sup>K<sup>−1</sup>m<sup>−2</sup> at 200 K, and 2.15 ± 0.18 ⋅ 10<sup>3</sup> Js<sup>−1/2</sup>K<sup>−1</sup>m<sup>−2</sup> at 300 K. A minimal mass loss of 0.62% up to 1200 °C, with water and hydrogen contents of 0.32 and 0.032%, respectively, suggests low volatile content. These results provide key insights into heat transfer behavior and the parent body evolution of the Bursa meteorite.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical and thermal properties of Bursa L6 chondrite: a combination of density, porosity, specific heat, water content, thermal conductivity, and thermal diffusivity results\",\"authors\":\"Cisem Altunayar-Unsalan,&nbsp;Ozan Unsalan,&nbsp;Radosław A. Wach,&nbsp;Marian A. Szurgot\",\"doi\":\"10.1007/s10509-025-04443-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the first integrated analysis of the Bursa L6 chondrite’s thermophysical properties using 3D laser scanning, pycnometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The meteorite exhibits a bulk density of 3.476 g/cm<sup>3</sup>, a grain density of 3.69 g/cm<sup>3</sup>, and porosity of 5.80%. DSC revealed the presence of troilite (FeS) with <span>\\\\(\\\\alpha /\\\\beta \\\\)</span> and <span>\\\\(\\\\beta /\\\\gamma \\\\)</span> phase transition shifts across different regions, indicating a temperature gradient during atmospheric entry, with a calculated troilite content of 4.59 wt.%. Specific heat capacity was found to be 740 ± 33 Jkg<sup>−1</sup>K<sup>−1</sup> at room temperature, while volumetric heat capacity ranged from 1.90 ± 0.11 MJ/(m<sup>3</sup>K) at 200 K and 2.57 1.90 ± 0.11 MJ/(m<sup>3</sup>K) at 300 K. The atom-molar heat capacity increased from 12.64 J/(molK) to 17.41 J/(molK) across the same temperature range. Thermal diffusivity was estimated to be 1.25 ± 0.36⋅10<sup>−6</sup> m<sup>2</sup>s<sup>−1</sup> in air and 0.71 ± 0.03⋅10<sup>−6</sup> m<sup>2</sup>s<sup>−1</sup> in a vacuum. Thermal conductivity is 2.6 ± 0.6 Wm<sup>−1</sup>K<sup>−1</sup> in air and 1.8 ± 0.2 Wm<sup>−1</sup>K<sup>−1</sup> in vacuum at 300 K for both. Thermal inertia predicted for vacuum is equal to 1.84 ± 0.14 ⋅ 10<sup>3</sup> Js<sup>−1/2</sup>K<sup>−1</sup>m<sup>−2</sup> at 200 K, and 2.15 ± 0.18 ⋅ 10<sup>3</sup> Js<sup>−1/2</sup>K<sup>−1</sup>m<sup>−2</sup> at 300 K. A minimal mass loss of 0.62% up to 1200 °C, with water and hydrogen contents of 0.32 and 0.032%, respectively, suggests low volatile content. These results provide key insights into heat transfer behavior and the parent body evolution of the Bursa meteorite.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04443-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04443-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次使用3D激光扫描、体积测量、差示扫描量热法(DSC)和热重分析(TGA)对Bursa L6球粒陨石的热物理性质进行了综合分析。该陨石的体积密度为3.476 g/cm3,颗粒密度为3.69 g/cm3,孔隙率为5.80%. DSC revealed the presence of troilite (FeS) with \(\alpha /\beta \) and \(\beta /\gamma \) phase transition shifts across different regions, indicating a temperature gradient during atmospheric entry, with a calculated troilite content of 4.59 wt.%. Specific heat capacity was found to be 740 ± 33 Jkg−1K−1 at room temperature, while volumetric heat capacity ranged from 1.90 ± 0.11 MJ/(m3K) at 200 K and 2.57 1.90 ± 0.11 MJ/(m3K) at 300 K. The atom-molar heat capacity increased from 12.64 J/(molK) to 17.41 J/(molK) across the same temperature range. Thermal diffusivity was estimated to be 1.25 ± 0.36⋅10−6 m2s−1 in air and 0.71 ± 0.03⋅10−6 m2s−1 in a vacuum. Thermal conductivity is 2.6 ± 0.6 Wm−1K−1 in air and 1.8 ± 0.2 Wm−1K−1 in vacuum at 300 K for both. Thermal inertia predicted for vacuum is equal to 1.84 ± 0.14 ⋅ 103 Js−1/2K−1m−2 at 200 K, and 2.15 ± 0.18 ⋅ 103 Js−1/2K−1m−2 at 300 K. A minimal mass loss of 0.62% up to 1200 °C, with water and hydrogen contents of 0.32 and 0.032%, respectively, suggests low volatile content. These results provide key insights into heat transfer behavior and the parent body evolution of the Bursa meteorite.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical and thermal properties of Bursa L6 chondrite: a combination of density, porosity, specific heat, water content, thermal conductivity, and thermal diffusivity results

This study presents the first integrated analysis of the Bursa L6 chondrite’s thermophysical properties using 3D laser scanning, pycnometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The meteorite exhibits a bulk density of 3.476 g/cm3, a grain density of 3.69 g/cm3, and porosity of 5.80%. DSC revealed the presence of troilite (FeS) with \(\alpha /\beta \) and \(\beta /\gamma \) phase transition shifts across different regions, indicating a temperature gradient during atmospheric entry, with a calculated troilite content of 4.59 wt.%. Specific heat capacity was found to be 740 ± 33 Jkg−1K−1 at room temperature, while volumetric heat capacity ranged from 1.90 ± 0.11 MJ/(m3K) at 200 K and 2.57 1.90 ± 0.11 MJ/(m3K) at 300 K. The atom-molar heat capacity increased from 12.64 J/(molK) to 17.41 J/(molK) across the same temperature range. Thermal diffusivity was estimated to be 1.25 ± 0.36⋅10−6 m2s−1 in air and 0.71 ± 0.03⋅10−6 m2s−1 in a vacuum. Thermal conductivity is 2.6 ± 0.6 Wm−1K−1 in air and 1.8 ± 0.2 Wm−1K−1 in vacuum at 300 K for both. Thermal inertia predicted for vacuum is equal to 1.84 ± 0.14 ⋅ 103 Js−1/2K−1m−2 at 200 K, and 2.15 ± 0.18 ⋅ 103 Js−1/2K−1m−2 at 300 K. A minimal mass loss of 0.62% up to 1200 °C, with water and hydrogen contents of 0.32 and 0.032%, respectively, suggests low volatile content. These results provide key insights into heat transfer behavior and the parent body evolution of the Bursa meteorite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信