粘弹性杆振动问题中线性Volterra积分-微分算子的双曲性质

IF 1.5 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
N.A. Rautian, D.V. Georgievskii
{"title":"粘弹性杆振动问题中线性Volterra积分-微分算子的双曲性质","authors":"N.A. Rautian,&nbsp;D.V. Georgievskii","doi":"10.1134/S106192082502013X","DOIUrl":null,"url":null,"abstract":"<p> For Volterra integro-differential operators in partial derivatives of the second order, the concept of hyperbolicity with respect to a cone is introduced. It is established that the hyperbolicity with respect to a cone is equivalent to the localization of the support of the fundamental solution of the Volterra integro-differential operator in the conjugate cone. The hyperbolicity with respect to a cone of the integro-differential operator of oscillations of a viscoelastic rod with a fractional-exponential relaxation function is proved. </p><p> <b> DOI</b> 10.1134/S106192082502013X </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 2","pages":"386 - 398"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic Property of a Linear Volterra Integro-Differential Operator in Problems of Oscillations of a Viscoelastic Rod\",\"authors\":\"N.A. Rautian,&nbsp;D.V. Georgievskii\",\"doi\":\"10.1134/S106192082502013X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> For Volterra integro-differential operators in partial derivatives of the second order, the concept of hyperbolicity with respect to a cone is introduced. It is established that the hyperbolicity with respect to a cone is equivalent to the localization of the support of the fundamental solution of the Volterra integro-differential operator in the conjugate cone. The hyperbolicity with respect to a cone of the integro-differential operator of oscillations of a viscoelastic rod with a fractional-exponential relaxation function is proved. </p><p> <b> DOI</b> 10.1134/S106192082502013X </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 2\",\"pages\":\"386 - 398\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082502013X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082502013X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于二阶偏导数的Volterra积分微分算子,引入了关于锥的双曲性的概念。建立了锥的双曲性等价于共轭锥上Volterra积分微分算子的基本解的支撑点的局域化。证明了具有分数指数松弛函数的粘弹性杆的振动积分微分算子对锥的双曲性。DOI 10.1134 / S106192082502013X
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolic Property of a Linear Volterra Integro-Differential Operator in Problems of Oscillations of a Viscoelastic Rod

For Volterra integro-differential operators in partial derivatives of the second order, the concept of hyperbolicity with respect to a cone is introduced. It is established that the hyperbolicity with respect to a cone is equivalent to the localization of the support of the fundamental solution of the Volterra integro-differential operator in the conjugate cone. The hyperbolicity with respect to a cone of the integro-differential operator of oscillations of a viscoelastic rod with a fractional-exponential relaxation function is proved.

DOI 10.1134/S106192082502013X

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信