一类小参数退化抛物型方程基本解的精确渐近性

IF 1.5 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
M.A. Rakhel
{"title":"一类小参数退化抛物型方程基本解的精确渐近性","authors":"M.A. Rakhel","doi":"10.1134/S1061920825600722","DOIUrl":null,"url":null,"abstract":"<p> In this paper, the asymptotics of the fundamental solution of a degenerate parabolic equation with a small parameter at the highest derivative is constructed. It is shown that the leading term of the asymptotics contains two phase functions, which is not typical for linear problems. Estimates are provided that relate the leading term of the asymptotics in the general case to the exact solution in the trivial case. The asymptotics is constructed in the form of a formal series in powers of the small parameter. The asymptotics is justified by proving the convergence of the obtained series. </p><p> <b> DOI</b> 10.1134/S1061920825600722 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 2","pages":"379 - 385"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Asymptotics of the Fundamental Solution of a Degenerate Parabolic Equation with a Small Parameter\",\"authors\":\"M.A. Rakhel\",\"doi\":\"10.1134/S1061920825600722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this paper, the asymptotics of the fundamental solution of a degenerate parabolic equation with a small parameter at the highest derivative is constructed. It is shown that the leading term of the asymptotics contains two phase functions, which is not typical for linear problems. Estimates are provided that relate the leading term of the asymptotics in the general case to the exact solution in the trivial case. The asymptotics is constructed in the form of a formal series in powers of the small parameter. The asymptotics is justified by proving the convergence of the obtained series. </p><p> <b> DOI</b> 10.1134/S1061920825600722 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 2\",\"pages\":\"379 - 385\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920825600722\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825600722","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了一类具有小参数的退化抛物型方程在最高导数处的基本解的渐近性。结果表明,渐近的前项包含两个相函数,这对于线性问题来说是不典型的。给出了一般情况下渐近的前导项与平凡情况下的精确解之间的估计。渐近函数以小参数幂级数的形式构造。通过证明所得级数的收敛性来证明渐近性。DOI 10.1134 / S1061920825600722
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Asymptotics of the Fundamental Solution of a Degenerate Parabolic Equation with a Small Parameter

In this paper, the asymptotics of the fundamental solution of a degenerate parabolic equation with a small parameter at the highest derivative is constructed. It is shown that the leading term of the asymptotics contains two phase functions, which is not typical for linear problems. Estimates are provided that relate the leading term of the asymptotics in the general case to the exact solution in the trivial case. The asymptotics is constructed in the form of a formal series in powers of the small parameter. The asymptotics is justified by proving the convergence of the obtained series.

DOI 10.1134/S1061920825600722

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信