高寒地区虚拟电厂终端分散资源调度特性的参数聚合算法研究

Q2 Energy
Yan Wang, Ruizhi Zhang, Ying Wang, Wen Xiang, Lu Wang
{"title":"高寒地区虚拟电厂终端分散资源调度特性的参数聚合算法研究","authors":"Yan Wang,&nbsp;Ruizhi Zhang,&nbsp;Ying Wang,&nbsp;Wen Xiang,&nbsp;Lu Wang","doi":"10.1186/s42162-025-00554-0","DOIUrl":null,"url":null,"abstract":"<div><p>To address the “secondary dispatch” problem in alpine virtual power plants caused by uncertainties in decentralized resource allocation, we develop an algorithm for aggregating dispatch parameters of distributed resources to achieve real-time load-demand matching. Based on alpine power generation resources, we design a specialized virtual power plant structure and analyze its market trading applications. For the actual operation of the decentralized resources in the alpine virtual power plant, we determined the power provided by the alpine virtual power plant to the electric power system as well as the adjustable power capacity and other scheduling parameters, and then designed the dispatch model objective with the decentralized resource power and scheduling parameters based on the imitator dynamic algorithm. The model incorporates constraints based on these parameters to enable effective aggregation of adjustable power ranges for both individual resources and the entire virtual power plant, while ensuring compliance with all power constraints. This approach enhances scheduling flexibility and resolves the grid-side secondary dispatch issue. An improved ant colony algorithm based on continuous optimization was used to solve the aggregation parameters. Experimental results demonstrate superior solution performance, with the aggregated parameters increasing wind farm planned output by over 12 MW across different periods. This significantly boosts power delivery to the main grid, provides more stable supply, and improves virtual power plant revenue.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00554-0","citationCount":"0","resultStr":"{\"title\":\"A study of parameter aggregation algorithms for virtual power plant terminal decentralized resource scheduling characteristics in alpine regions\",\"authors\":\"Yan Wang,&nbsp;Ruizhi Zhang,&nbsp;Ying Wang,&nbsp;Wen Xiang,&nbsp;Lu Wang\",\"doi\":\"10.1186/s42162-025-00554-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the “secondary dispatch” problem in alpine virtual power plants caused by uncertainties in decentralized resource allocation, we develop an algorithm for aggregating dispatch parameters of distributed resources to achieve real-time load-demand matching. Based on alpine power generation resources, we design a specialized virtual power plant structure and analyze its market trading applications. For the actual operation of the decentralized resources in the alpine virtual power plant, we determined the power provided by the alpine virtual power plant to the electric power system as well as the adjustable power capacity and other scheduling parameters, and then designed the dispatch model objective with the decentralized resource power and scheduling parameters based on the imitator dynamic algorithm. The model incorporates constraints based on these parameters to enable effective aggregation of adjustable power ranges for both individual resources and the entire virtual power plant, while ensuring compliance with all power constraints. This approach enhances scheduling flexibility and resolves the grid-side secondary dispatch issue. An improved ant colony algorithm based on continuous optimization was used to solve the aggregation parameters. Experimental results demonstrate superior solution performance, with the aggregated parameters increasing wind farm planned output by over 12 MW across different periods. This significantly boosts power delivery to the main grid, provides more stable supply, and improves virtual power plant revenue.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00554-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00554-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00554-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

为解决分布式资源分配不确定性导致的高山虚拟电厂“二次调度”问题,提出了一种分布式资源调度参数聚合算法,实现实时负荷需求匹配。基于高山发电资源,设计了一种专门的虚拟电厂结构,并对其市场交易应用进行了分析。针对高寒虚拟电厂分散资源的实际运行情况,确定了高寒虚拟电厂向电力系统提供的功率以及可调功率容量等调度参数,设计了基于模仿者动态算法的分散资源功率和调度参数的调度模型目标。该模型结合了基于这些参数的约束,以实现对单个资源和整个虚拟发电厂的可调节功率范围的有效聚合,同时确保符合所有功率约束。该方法提高了调度灵活性,解决了电网侧二次调度问题。采用基于连续优化的改进蚁群算法求解聚合参数。实验结果显示了卓越的解决方案性能,综合参数使风电场在不同时期的计划输出增加了12兆瓦以上。这大大提高了向主电网的电力输送,提供了更稳定的供应,并提高了虚拟电厂的收入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of parameter aggregation algorithms for virtual power plant terminal decentralized resource scheduling characteristics in alpine regions

To address the “secondary dispatch” problem in alpine virtual power plants caused by uncertainties in decentralized resource allocation, we develop an algorithm for aggregating dispatch parameters of distributed resources to achieve real-time load-demand matching. Based on alpine power generation resources, we design a specialized virtual power plant structure and analyze its market trading applications. For the actual operation of the decentralized resources in the alpine virtual power plant, we determined the power provided by the alpine virtual power plant to the electric power system as well as the adjustable power capacity and other scheduling parameters, and then designed the dispatch model objective with the decentralized resource power and scheduling parameters based on the imitator dynamic algorithm. The model incorporates constraints based on these parameters to enable effective aggregation of adjustable power ranges for both individual resources and the entire virtual power plant, while ensuring compliance with all power constraints. This approach enhances scheduling flexibility and resolves the grid-side secondary dispatch issue. An improved ant colony algorithm based on continuous optimization was used to solve the aggregation parameters. Experimental results demonstrate superior solution performance, with the aggregated parameters increasing wind farm planned output by over 12 MW across different periods. This significantly boosts power delivery to the main grid, provides more stable supply, and improves virtual power plant revenue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信