{"title":"退化Bell和Dowling多项式的spivey型递推关系","authors":"T. Kim, D. S. Kim","doi":"10.1134/S1061920825020074","DOIUrl":null,"url":null,"abstract":"<p> Spivey showed a recurrence relation for the Bell numbers which are sums of the Stirling numbers of the second kind. Recently, the degenerate Bell polynomials and the degenerate Dowling polynomials were studied, whose coefficients are, respectively, the degenerate Stirling numbers of the second kind and the degenerate Whitney numbers of the second kind. The aim of this paper is to prove Spivey-type recurrence relations for those polynomials. In addition, a recurrence relation of the same type is shown for the degenerate <span>\\(r\\)</span>-Bell polynomials. </p><p> <b> DOI</b> 10.1134/S1061920825020074 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 2","pages":"288 - 296"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spivey-Type Recurrence Relations for Degenerate Bell and Dowling Polynomials\",\"authors\":\"T. Kim, D. S. Kim\",\"doi\":\"10.1134/S1061920825020074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Spivey showed a recurrence relation for the Bell numbers which are sums of the Stirling numbers of the second kind. Recently, the degenerate Bell polynomials and the degenerate Dowling polynomials were studied, whose coefficients are, respectively, the degenerate Stirling numbers of the second kind and the degenerate Whitney numbers of the second kind. The aim of this paper is to prove Spivey-type recurrence relations for those polynomials. In addition, a recurrence relation of the same type is shown for the degenerate <span>\\\\(r\\\\)</span>-Bell polynomials. </p><p> <b> DOI</b> 10.1134/S1061920825020074 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"32 2\",\"pages\":\"288 - 296\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920825020074\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825020074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Spivey-Type Recurrence Relations for Degenerate Bell and Dowling Polynomials
Spivey showed a recurrence relation for the Bell numbers which are sums of the Stirling numbers of the second kind. Recently, the degenerate Bell polynomials and the degenerate Dowling polynomials were studied, whose coefficients are, respectively, the degenerate Stirling numbers of the second kind and the degenerate Whitney numbers of the second kind. The aim of this paper is to prove Spivey-type recurrence relations for those polynomials. In addition, a recurrence relation of the same type is shown for the degenerate \(r\)-Bell polynomials.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.