\(\textrm{BMO}\)空间上某些Calderón-Zygmund型奇异积分的有界性估计

IF 0.5 4区 数学 Q3 MATHEMATICS
Yinping Xin, Sibei Yang
{"title":"\\(\\textrm{BMO}\\)空间上某些Calderón-Zygmund型奇异积分的有界性估计","authors":"Yinping Xin,&nbsp;Sibei Yang","doi":"10.1007/s00013-025-02119-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\beta \\in (0,n)\\)</span>. In this paper, we study the boundedness of the Calderón–Zygmund type singular integral </p><div><div><span>$$ T(f)(x):=\\mathrm {p.v.}\\int \\limits _{\\mathbb {R}^n}\\frac{\\Omega (y)}{|y|^{n-\\beta }}f(x-y)\\,dy $$</span></div></div><p>on the space <span>\\(\\textrm{BMO}(\\mathbb {R}^n)\\)</span>. Precisely, let <span>\\(q\\in (1,\\infty )\\)</span> and <span>\\(\\beta \\in (0,\\frac{(q-1)n}{q})\\)</span>. We prove that, for any <span>\\(f\\in \\textrm{BMO}(\\mathbb {R}^n)\\cap L^{q'}(\\mathbb {R}^n)\\)</span>, <span>\\(Tf\\in \\textrm{BMO}(\\mathbb {R}^n)\\)</span> and </p><div><div><span>$$ \\Vert Tf\\Vert _{\\textrm{BMO}(\\mathbb {R}^n)}\\le C\\left[ \\Vert f\\Vert _{\\textrm{BMO}(\\mathbb {R}^n)}+\\frac{\\beta ^{\\frac{(q-1)n}{q}}}{\\root q \\of {n(q-1)-\\beta q}}\\Vert f\\Vert _{L^{q'}(\\mathbb {R}^n)}\\right] , $$</span></div></div><p>where <span>\\(q'\\in (1,\\infty )\\)</span> is given by <span>\\(1/q+1/q'=1\\)</span> and <i>C</i> is a positive constant independent of <span>\\(\\beta \\)</span> and <i>f</i>. This estimate can be seen as a further development for the corresponding results in the scale of Lebesgue spaces, established by Chen and Guo (J Funct Anal 281:Paper No. 109196, 2021), in the endpoint case.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"93 - 106"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness estimate for certain Calderón–Zygmund type singular integrals on \\\\(\\\\textrm{BMO}\\\\) spaces\",\"authors\":\"Yinping Xin,&nbsp;Sibei Yang\",\"doi\":\"10.1007/s00013-025-02119-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\beta \\\\in (0,n)\\\\)</span>. In this paper, we study the boundedness of the Calderón–Zygmund type singular integral </p><div><div><span>$$ T(f)(x):=\\\\mathrm {p.v.}\\\\int \\\\limits _{\\\\mathbb {R}^n}\\\\frac{\\\\Omega (y)}{|y|^{n-\\\\beta }}f(x-y)\\\\,dy $$</span></div></div><p>on the space <span>\\\\(\\\\textrm{BMO}(\\\\mathbb {R}^n)\\\\)</span>. Precisely, let <span>\\\\(q\\\\in (1,\\\\infty )\\\\)</span> and <span>\\\\(\\\\beta \\\\in (0,\\\\frac{(q-1)n}{q})\\\\)</span>. We prove that, for any <span>\\\\(f\\\\in \\\\textrm{BMO}(\\\\mathbb {R}^n)\\\\cap L^{q'}(\\\\mathbb {R}^n)\\\\)</span>, <span>\\\\(Tf\\\\in \\\\textrm{BMO}(\\\\mathbb {R}^n)\\\\)</span> and </p><div><div><span>$$ \\\\Vert Tf\\\\Vert _{\\\\textrm{BMO}(\\\\mathbb {R}^n)}\\\\le C\\\\left[ \\\\Vert f\\\\Vert _{\\\\textrm{BMO}(\\\\mathbb {R}^n)}+\\\\frac{\\\\beta ^{\\\\frac{(q-1)n}{q}}}{\\\\root q \\\\of {n(q-1)-\\\\beta q}}\\\\Vert f\\\\Vert _{L^{q'}(\\\\mathbb {R}^n)}\\\\right] , $$</span></div></div><p>where <span>\\\\(q'\\\\in (1,\\\\infty )\\\\)</span> is given by <span>\\\\(1/q+1/q'=1\\\\)</span> and <i>C</i> is a positive constant independent of <span>\\\\(\\\\beta \\\\)</span> and <i>f</i>. This estimate can be seen as a further development for the corresponding results in the scale of Lebesgue spaces, established by Chen and Guo (J Funct Anal 281:Paper No. 109196, 2021), in the endpoint case.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 1\",\"pages\":\"93 - 106\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02119-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02119-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让\(\beta \in (0,n)\)。本文研究了空间\(\textrm{BMO}(\mathbb {R}^n)\)上Calderón-Zygmund型奇异积分$$ T(f)(x):=\mathrm {p.v.}\int \limits _{\mathbb {R}^n}\frac{\Omega (y)}{|y|^{n-\beta }}f(x-y)\,dy $$的有界性。确切地说,让\(q\in (1,\infty )\)和\(\beta \in (0,\frac{(q-1)n}{q})\)。我们证明,对于任意\(f\in \textrm{BMO}(\mathbb {R}^n)\cap L^{q'}(\mathbb {R}^n)\), \(Tf\in \textrm{BMO}(\mathbb {R}^n)\)和$$ \Vert Tf\Vert _{\textrm{BMO}(\mathbb {R}^n)}\le C\left[ \Vert f\Vert _{\textrm{BMO}(\mathbb {R}^n)}+\frac{\beta ^{\frac{(q-1)n}{q}}}{\root q \of {n(q-1)-\beta q}}\Vert f\Vert _{L^{q'}(\mathbb {R}^n)}\right] , $$,其中\(q'\in (1,\infty )\)由\(1/q+1/q'=1\)给出,并且C是独立于\(\beta \)和f的正常数。这一估计可以看作是Chen和Guo (J Funct Anal 281:Paper No. 109196,2021)在端点情况下在Lebesgue空间尺度上的相应结果的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness estimate for certain Calderón–Zygmund type singular integrals on \(\textrm{BMO}\) spaces

Let \(\beta \in (0,n)\). In this paper, we study the boundedness of the Calderón–Zygmund type singular integral

$$ T(f)(x):=\mathrm {p.v.}\int \limits _{\mathbb {R}^n}\frac{\Omega (y)}{|y|^{n-\beta }}f(x-y)\,dy $$

on the space \(\textrm{BMO}(\mathbb {R}^n)\). Precisely, let \(q\in (1,\infty )\) and \(\beta \in (0,\frac{(q-1)n}{q})\). We prove that, for any \(f\in \textrm{BMO}(\mathbb {R}^n)\cap L^{q'}(\mathbb {R}^n)\), \(Tf\in \textrm{BMO}(\mathbb {R}^n)\) and

$$ \Vert Tf\Vert _{\textrm{BMO}(\mathbb {R}^n)}\le C\left[ \Vert f\Vert _{\textrm{BMO}(\mathbb {R}^n)}+\frac{\beta ^{\frac{(q-1)n}{q}}}{\root q \of {n(q-1)-\beta q}}\Vert f\Vert _{L^{q'}(\mathbb {R}^n)}\right] , $$

where \(q'\in (1,\infty )\) is given by \(1/q+1/q'=1\) and C is a positive constant independent of \(\beta \) and f. This estimate can be seen as a further development for the corresponding results in the scale of Lebesgue spaces, established by Chen and Guo (J Funct Anal 281:Paper No. 109196, 2021), in the endpoint case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信