基于对数变换的连续抽样随机无响应和测量误差下总体方差的新估计

IF 0.7 Q2 MATHEMATICS
Ahmed Audu, Maggie Aphane, Olatunji Olawoyin Ishaq, Ran Vijay Kumar Singh
{"title":"基于对数变换的连续抽样随机无响应和测量误差下总体方差的新估计","authors":"Ahmed Audu,&nbsp;Maggie Aphane,&nbsp;Olatunji Olawoyin Ishaq,&nbsp;Ran Vijay Kumar Singh","doi":"10.1007/s13370-025-01324-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considered the problem of estimation of population variance of the study character in two-occasion (successive) sampling in absence and presence of non-response and measurement error. Logarithmic type estimators have been developed to reduce the nuisance effect of non-response in sample surveys. The proposed logarithmic based estimators aim to enhance the precision and validity of inferences drawn from successive sampling surveys, where non-sampling errors can significantly affect the quality of the data and the resulting population parameter estimates. The expressions for the biases and mean squared errors of the proposed estimators were derived to quantify their statistical properties and performance. The empirical results through simulation studies demonstrated that the proposed logarithmic-type estimators outperform the traditional variance estimator obtained through linear combination of sample variance and conventional ratio estimator in terms of relative absolute bias and mean squared error, especially when non-response and measurement errors are substantial.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01324-7.pdf","citationCount":"0","resultStr":"{\"title\":\"New estimators of population variance based on logarithmic transformation in the presence of random non-response and measurement errors under successive sampling\",\"authors\":\"Ahmed Audu,&nbsp;Maggie Aphane,&nbsp;Olatunji Olawoyin Ishaq,&nbsp;Ran Vijay Kumar Singh\",\"doi\":\"10.1007/s13370-025-01324-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considered the problem of estimation of population variance of the study character in two-occasion (successive) sampling in absence and presence of non-response and measurement error. Logarithmic type estimators have been developed to reduce the nuisance effect of non-response in sample surveys. The proposed logarithmic based estimators aim to enhance the precision and validity of inferences drawn from successive sampling surveys, where non-sampling errors can significantly affect the quality of the data and the resulting population parameter estimates. The expressions for the biases and mean squared errors of the proposed estimators were derived to quantify their statistical properties and performance. The empirical results through simulation studies demonstrated that the proposed logarithmic-type estimators outperform the traditional variance estimator obtained through linear combination of sample variance and conventional ratio estimator in terms of relative absolute bias and mean squared error, especially when non-response and measurement errors are substantial.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01324-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01324-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01324-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在不存在无响应和测量误差的情况下,两次(连续)抽样中研究性状总体方差的估计问题。对数型估计器的发展是为了减少样本调查中无响应的讨厌影响。提出的基于对数的估计器旨在提高从连续抽样调查中得出的推断的精度和有效性,其中非抽样误差会显著影响数据的质量和由此产生的总体参数估计。推导了所提估计器的偏差和均方误差表达式,量化了它们的统计性质和性能。通过仿真研究的实证结果表明,所提出的对数型估计量在相对绝对偏差和均方误差方面优于传统的由样本方差和传统比率估计量线性组合得到的方差估计量,特别是在非响应误差和测量误差较大的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New estimators of population variance based on logarithmic transformation in the presence of random non-response and measurement errors under successive sampling

This paper considered the problem of estimation of population variance of the study character in two-occasion (successive) sampling in absence and presence of non-response and measurement error. Logarithmic type estimators have been developed to reduce the nuisance effect of non-response in sample surveys. The proposed logarithmic based estimators aim to enhance the precision and validity of inferences drawn from successive sampling surveys, where non-sampling errors can significantly affect the quality of the data and the resulting population parameter estimates. The expressions for the biases and mean squared errors of the proposed estimators were derived to quantify their statistical properties and performance. The empirical results through simulation studies demonstrated that the proposed logarithmic-type estimators outperform the traditional variance estimator obtained through linear combination of sample variance and conventional ratio estimator in terms of relative absolute bias and mean squared error, especially when non-response and measurement errors are substantial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信