{"title":"第一积分,非线性偏差分方程的守恒向量","authors":"Akhtar Hussain, A. H. Kara, F. D. Zaman","doi":"10.1007/s13370-025-01326-5","DOIUrl":null,"url":null,"abstract":"<div><p>We conduct a symmetry analysis of the discrete Fitzhugh-Nagumo (FN) and the Kolmogorov Petrovskii Piskunov (KPP) equations for which the discrete versions are produced using a formal discretization method. The primary aspect of the procedure is to generate a symmetry algebra using a technique developed by Hydon. Then, we derive a method for the construction of conserved vectors or first integral vectors for the discrete equations.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First integrals, conserved vectors of nonlinear partial difference equations\",\"authors\":\"Akhtar Hussain, A. H. Kara, F. D. Zaman\",\"doi\":\"10.1007/s13370-025-01326-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We conduct a symmetry analysis of the discrete Fitzhugh-Nagumo (FN) and the Kolmogorov Petrovskii Piskunov (KPP) equations for which the discrete versions are produced using a formal discretization method. The primary aspect of the procedure is to generate a symmetry algebra using a technique developed by Hydon. Then, we derive a method for the construction of conserved vectors or first integral vectors for the discrete equations.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01326-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01326-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
First integrals, conserved vectors of nonlinear partial difference equations
We conduct a symmetry analysis of the discrete Fitzhugh-Nagumo (FN) and the Kolmogorov Petrovskii Piskunov (KPP) equations for which the discrete versions are produced using a formal discretization method. The primary aspect of the procedure is to generate a symmetry algebra using a technique developed by Hydon. Then, we derive a method for the construction of conserved vectors or first integral vectors for the discrete equations.