碳材料对CO - p4vpy /碳选择性电还原CO催化剂CoN4Cx活性位点形成的影响

IF 2.8 4区 化学 Q3 CHEMISTRY, PHYSICAL
Siyuan Jia, Shoji Iguchi, Ichiro Yamanaka
{"title":"碳材料对CO - p4vpy /碳选择性电还原CO催化剂CoN4Cx活性位点形成的影响","authors":"Siyuan Jia,&nbsp;Shoji Iguchi,&nbsp;Ichiro Yamanaka","doi":"10.1007/s12678-025-00945-7","DOIUrl":null,"url":null,"abstract":"<div><p>Development of active electrocatalyst for CO<sub>2</sub> reduction to useful chemicals would be essential factor to achieve the carbon neutral society. The Co poly-4-vinyl-pyridine (P4VPy)/Ketjenblack (KB) activated thermally was found for an active electrocatalyst in the electroreduction of CO<sub>2</sub> with water by the solid-polymer-electrolyte, SPE, electrolysis cell. Various carbon supports were applied instead of KB. Contents of CoN<sub>4</sub>C<sub>x</sub>, CoO and Co<sup>0</sup> compounds on activated electrocatalysts were determined by linear combination fitting, LCF, of X-ray absorption near edge structure, XANES. Pyrolysis of the catalyst precursor for activation was essential and kinds of carbon supports strongly influenced formation of the Co compounds. It was revealed that the content of CoN<sub>4</sub>C<sub>x</sub> related to the current efficiency of the CO formation and that of CoO and Co<sup>0</sup> related the H<sub>2</sub> formation.</p><h3>Graphical Abstract</h3><p>Relation between Faraday efficiency to CO and content of CoN<sub>4</sub>C<sub>x</sub></p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 4","pages":"601 - 609"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-025-00945-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of Carbon Materials on Formation of CoN4Cx Active Site of Co-P4VPy/Carbon Catalysts for Selective CO2 Electroreduction to CO\",\"authors\":\"Siyuan Jia,&nbsp;Shoji Iguchi,&nbsp;Ichiro Yamanaka\",\"doi\":\"10.1007/s12678-025-00945-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Development of active electrocatalyst for CO<sub>2</sub> reduction to useful chemicals would be essential factor to achieve the carbon neutral society. The Co poly-4-vinyl-pyridine (P4VPy)/Ketjenblack (KB) activated thermally was found for an active electrocatalyst in the electroreduction of CO<sub>2</sub> with water by the solid-polymer-electrolyte, SPE, electrolysis cell. Various carbon supports were applied instead of KB. Contents of CoN<sub>4</sub>C<sub>x</sub>, CoO and Co<sup>0</sup> compounds on activated electrocatalysts were determined by linear combination fitting, LCF, of X-ray absorption near edge structure, XANES. Pyrolysis of the catalyst precursor for activation was essential and kinds of carbon supports strongly influenced formation of the Co compounds. It was revealed that the content of CoN<sub>4</sub>C<sub>x</sub> related to the current efficiency of the CO formation and that of CoO and Co<sup>0</sup> related the H<sub>2</sub> formation.</p><h3>Graphical Abstract</h3><p>Relation between Faraday efficiency to CO and content of CoN<sub>4</sub>C<sub>x</sub></p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"16 4\",\"pages\":\"601 - 609\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12678-025-00945-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-025-00945-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-025-00945-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发将二氧化碳还原为有用化学物质的活性电催化剂是实现碳中和社会的关键因素。在固相聚合物-电解质(SPE)电解池中,发现Co -聚4-乙烯基吡啶(P4VPy)/Ketjenblack (KB)是一种热活化的电催化剂,可用于CO2与水的电还原。采用各种碳载体代替KB。采用x射线吸收近边结构XANES线性组合拟合(LCF)法测定了活化电催化剂上CoN4Cx、CoO和Co0化合物的含量。催化剂前驱体的热解活化是必不可少的,碳载体的种类对Co化合物的形成有很大的影响。结果表明,CoN4Cx的含量与CO的电流生成效率有关,CoO和Co0的含量与H2的生成效率有关。图示:CO的法拉第效率与CoN4Cx含量的关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Carbon Materials on Formation of CoN4Cx Active Site of Co-P4VPy/Carbon Catalysts for Selective CO2 Electroreduction to CO

Development of active electrocatalyst for CO2 reduction to useful chemicals would be essential factor to achieve the carbon neutral society. The Co poly-4-vinyl-pyridine (P4VPy)/Ketjenblack (KB) activated thermally was found for an active electrocatalyst in the electroreduction of CO2 with water by the solid-polymer-electrolyte, SPE, electrolysis cell. Various carbon supports were applied instead of KB. Contents of CoN4Cx, CoO and Co0 compounds on activated electrocatalysts were determined by linear combination fitting, LCF, of X-ray absorption near edge structure, XANES. Pyrolysis of the catalyst precursor for activation was essential and kinds of carbon supports strongly influenced formation of the Co compounds. It was revealed that the content of CoN4Cx related to the current efficiency of the CO formation and that of CoO and Co0 related the H2 formation.

Graphical Abstract

Relation between Faraday efficiency to CO and content of CoN4Cx

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信