三维均匀随机分布中平均最近邻距离的随机平铺模型

R. K. Everett, M. Zupan
{"title":"三维均匀随机分布中平均最近邻距离的随机平铺模型","authors":"R. K. Everett,&nbsp;M. Zupan","doi":"10.1186/s41313-025-00068-y","DOIUrl":null,"url":null,"abstract":"<div><p>The mean nearest-neighbor distance is an important clustering/ordering metric in quantitative spatial analysis of microstructures; especially for materials containing particles or voids. Nearest-neighbor distance (<i>d</i><sub><b><i>NN</i></b></sub>) distributions in three-dimensional (3D), random-sequential-addition, uniform, hard-sphere, computer-generated patterns have been studied for volume fractions from 0.0001 to 0.35. Normal distributions can well fit these <i>d</i><sub><i>NN</i></sub> distributions and they provide insight into the study of nearest-neighbor (<i>NN</i>) metrics such as means, medians, and modes. Furthermore, we report on the development of an estimator for the 3D mean <i>d</i><sub><b><i>NN</i></b></sub> (<i>μ</i><sub><b><i>NN</i></b></sub>) based upon stochastic tiling. Stochastic tiling models involve random rotations of polyhedral space-filling tiles which allows the calculation of the probabilities for <i>d</i><sub><i>NN</i></sub> distributions. Solutions are presented for volume fractions ≈0.10 to the cubic theoretical maximum of ≈0.52. Extrapolating solutions to lower volume fractions also provides reasonable estimates. There is good agreement between the <i>μ</i><sub><b><i>NN</i></b></sub> estimates compared to the computer-generated random patterns. In the volume fraction region where deviations from these estimates exist, there is an apparent transition in the relationship between the fitted normal distribution means and the NN distance means at a volume fraction ≈0.25. Suggestions for areas of future research are highlighted.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsh.springeropen.com/counter/pdf/10.1186/s41313-025-00068-y","citationCount":"0","resultStr":"{\"title\":\"A stochastic tiling model of mean nearest-neighbor distances in three-dimensional uniform random distributions\",\"authors\":\"R. K. Everett,&nbsp;M. Zupan\",\"doi\":\"10.1186/s41313-025-00068-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mean nearest-neighbor distance is an important clustering/ordering metric in quantitative spatial analysis of microstructures; especially for materials containing particles or voids. Nearest-neighbor distance (<i>d</i><sub><b><i>NN</i></b></sub>) distributions in three-dimensional (3D), random-sequential-addition, uniform, hard-sphere, computer-generated patterns have been studied for volume fractions from 0.0001 to 0.35. Normal distributions can well fit these <i>d</i><sub><i>NN</i></sub> distributions and they provide insight into the study of nearest-neighbor (<i>NN</i>) metrics such as means, medians, and modes. Furthermore, we report on the development of an estimator for the 3D mean <i>d</i><sub><b><i>NN</i></b></sub> (<i>μ</i><sub><b><i>NN</i></b></sub>) based upon stochastic tiling. Stochastic tiling models involve random rotations of polyhedral space-filling tiles which allows the calculation of the probabilities for <i>d</i><sub><i>NN</i></sub> distributions. Solutions are presented for volume fractions ≈0.10 to the cubic theoretical maximum of ≈0.52. Extrapolating solutions to lower volume fractions also provides reasonable estimates. There is good agreement between the <i>μ</i><sub><b><i>NN</i></b></sub> estimates compared to the computer-generated random patterns. In the volume fraction region where deviations from these estimates exist, there is an apparent transition in the relationship between the fitted normal distribution means and the NN distance means at a volume fraction ≈0.25. Suggestions for areas of future research are highlighted.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsh.springeropen.com/counter/pdf/10.1186/s41313-025-00068-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-025-00068-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-025-00068-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

平均最近邻距离是微观结构定量空间分析中一种重要的聚类/排序度量;尤指含有颗粒或空隙的材料。三维(3D),随机顺序加法,均匀,硬球,计算机生成的模式中的最近邻距离(dNN)分布已在0.0001至0.35的体积分数中进行了研究。正态分布可以很好地拟合这些dNN分布,它们为研究最近邻(NN)指标(如均值、中位数和模式)提供了洞察力。此外,我们还报道了基于随机平铺的三维平均深度神经网络(μNN)估计器的开发。随机平铺模型涉及多面体空间填充平铺的随机旋转,这允许dNN分布的概率计算。给出了体积分数≈0.10至立方理论最大值≈0.52的解。外推解决方案,以较低的体积分数也提供了合理的估计。与计算机生成的随机模式相比,μNN估计之间有很好的一致性。在与这些估计存在偏差的体积分数区域,在体积分数≈0.25处,拟合的正态分布均值与神经网络距离均值之间的关系存在明显的转变。对未来的研究领域提出了建议。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic tiling model of mean nearest-neighbor distances in three-dimensional uniform random distributions

The mean nearest-neighbor distance is an important clustering/ordering metric in quantitative spatial analysis of microstructures; especially for materials containing particles or voids. Nearest-neighbor distance (dNN) distributions in three-dimensional (3D), random-sequential-addition, uniform, hard-sphere, computer-generated patterns have been studied for volume fractions from 0.0001 to 0.35. Normal distributions can well fit these dNN distributions and they provide insight into the study of nearest-neighbor (NN) metrics such as means, medians, and modes. Furthermore, we report on the development of an estimator for the 3D mean dNN (μNN) based upon stochastic tiling. Stochastic tiling models involve random rotations of polyhedral space-filling tiles which allows the calculation of the probabilities for dNN distributions. Solutions are presented for volume fractions ≈0.10 to the cubic theoretical maximum of ≈0.52. Extrapolating solutions to lower volume fractions also provides reasonable estimates. There is good agreement between the μNN estimates compared to the computer-generated random patterns. In the volume fraction region where deviations from these estimates exist, there is an apparent transition in the relationship between the fitted normal distribution means and the NN distance means at a volume fraction ≈0.25. Suggestions for areas of future research are highlighted.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信