基于Calderón建筑的大小空间

IF 1.6 3区 数学 Q1 MATHEMATICS
Evgenii I. Berezhnoi
{"title":"基于Calderón建筑的大小空间","authors":"Evgenii I. Berezhnoi","doi":"10.1007/s13324-025-01097-z","DOIUrl":null,"url":null,"abstract":"<div><p>We propose two general methods for defining grand and small spaces based on Calderón’s construction and prove some fundamental properties of these spaces. In particular, we give a complete description of associative spaces to general grand and small spaces. Our description allows us to give an exact answer to the question posed in [25]. We give some examples illustrating our constructions for spaces constructed on sets of finite and infinite measure.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grand and small spaces based on the Calderón’s construction\",\"authors\":\"Evgenii I. Berezhnoi\",\"doi\":\"10.1007/s13324-025-01097-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose two general methods for defining grand and small spaces based on Calderón’s construction and prove some fundamental properties of these spaces. In particular, we give a complete description of associative spaces to general grand and small spaces. Our description allows us to give an exact answer to the question posed in [25]. We give some examples illustrating our constructions for spaces constructed on sets of finite and infinite measure.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01097-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01097-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Calderón构造的基础上,提出了两种定义大空间和小空间的一般方法,并证明了这些空间的一些基本性质。特别地,我们对一般的大空间和小空间给出了关联空间的完整描述。我们的描述使我们能够对b[25]中提出的问题给出确切的答案。我们给出了在有限测度和无限测度集合上构造空间的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grand and small spaces based on the Calderón’s construction

We propose two general methods for defining grand and small spaces based on Calderón’s construction and prove some fundamental properties of these spaces. In particular, we give a complete description of associative spaces to general grand and small spaces. Our description allows us to give an exact answer to the question posed in [25]. We give some examples illustrating our constructions for spaces constructed on sets of finite and infinite measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信