{"title":"西番莲皮提取物在铜表面的自组装单层:微观结构和防腐性能","authors":"Ling Chen, Xiaofeng Pu, Guoyu Zhang, Junling Li, ChengXu Yang, Hao Wang, Bilan Lin, Yuye Xu","doi":"10.1134/S2070205125700194","DOIUrl":null,"url":null,"abstract":"<p>Green self-assembled monolayers (SAMs) were formed on the copper surface using <i>Passiflora edulis</i> Sims peel extract (PESPE). The functional groups of active constituents in PESPE and their self-assembly behavior were characterized by Fourier-transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effects of PESPE-SAMs on the surface roughness and hydrophobicity of copper were investigated utilizing atomic force microscopy (AFM) and a contact angle goniometer. The corrosion protection performance of PESPE-SAMs for copper in a 3.5% NaCl solution was evaluated through electrochemical measurements and an analysis of the corrosion morphology. Results indicate that functional groups such as C–O, C=O, and C=N within PESPE are adsorbed onto the copper substrate, forming a hydrophobic protective film (i.e., PESPE-SAMs). Notably, the corrosion rate of copper is significantly reduced, with a corrosion protection efficiency of approximately 86.7%. Pitting and flocculent corrosion products on the copper surface are almost entirely inhibited. Therefore, PESPE serves as an effective and renewable agent for SAMs formation, demonstrating extensive potential applications.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"61 2","pages":"456 - 467"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assembled Monolayers of Passiflora edulis Sims Peel Extract on Copper Surface: Microstructure and Corrosion Protection Performance\",\"authors\":\"Ling Chen, Xiaofeng Pu, Guoyu Zhang, Junling Li, ChengXu Yang, Hao Wang, Bilan Lin, Yuye Xu\",\"doi\":\"10.1134/S2070205125700194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Green self-assembled monolayers (SAMs) were formed on the copper surface using <i>Passiflora edulis</i> Sims peel extract (PESPE). The functional groups of active constituents in PESPE and their self-assembly behavior were characterized by Fourier-transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effects of PESPE-SAMs on the surface roughness and hydrophobicity of copper were investigated utilizing atomic force microscopy (AFM) and a contact angle goniometer. The corrosion protection performance of PESPE-SAMs for copper in a 3.5% NaCl solution was evaluated through electrochemical measurements and an analysis of the corrosion morphology. Results indicate that functional groups such as C–O, C=O, and C=N within PESPE are adsorbed onto the copper substrate, forming a hydrophobic protective film (i.e., PESPE-SAMs). Notably, the corrosion rate of copper is significantly reduced, with a corrosion protection efficiency of approximately 86.7%. Pitting and flocculent corrosion products on the copper surface are almost entirely inhibited. Therefore, PESPE serves as an effective and renewable agent for SAMs formation, demonstrating extensive potential applications.</p>\",\"PeriodicalId\":745,\"journal\":{\"name\":\"Protection of Metals and Physical Chemistry of Surfaces\",\"volume\":\"61 2\",\"pages\":\"456 - 467\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protection of Metals and Physical Chemistry of Surfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070205125700194\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205125700194","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Self-Assembled Monolayers of Passiflora edulis Sims Peel Extract on Copper Surface: Microstructure and Corrosion Protection Performance
Green self-assembled monolayers (SAMs) were formed on the copper surface using Passiflora edulis Sims peel extract (PESPE). The functional groups of active constituents in PESPE and their self-assembly behavior were characterized by Fourier-transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effects of PESPE-SAMs on the surface roughness and hydrophobicity of copper were investigated utilizing atomic force microscopy (AFM) and a contact angle goniometer. The corrosion protection performance of PESPE-SAMs for copper in a 3.5% NaCl solution was evaluated through electrochemical measurements and an analysis of the corrosion morphology. Results indicate that functional groups such as C–O, C=O, and C=N within PESPE are adsorbed onto the copper substrate, forming a hydrophobic protective film (i.e., PESPE-SAMs). Notably, the corrosion rate of copper is significantly reduced, with a corrosion protection efficiency of approximately 86.7%. Pitting and flocculent corrosion products on the copper surface are almost entirely inhibited. Therefore, PESPE serves as an effective and renewable agent for SAMs formation, demonstrating extensive potential applications.
期刊介绍:
Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.