利用多路复用和热噪声增强的连续可变量子中继器协议

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xin Li, Rigui Zhou, Yu Cai, Ruiqing Xu, Chao Gao, Weibo Gao
{"title":"利用多路复用和热噪声增强的连续可变量子中继器协议","authors":"Xin Li,&nbsp;Rigui Zhou,&nbsp;Yu Cai,&nbsp;Ruiqing Xu,&nbsp;Chao Gao,&nbsp;Weibo Gao","doi":"10.1007/s11128-025-04844-0","DOIUrl":null,"url":null,"abstract":"<div><p>The continuous-variable quantum repeater (CVQR) plays a crucial role in continuous-variable quantum key distribution (CV-QKD). It can largely extend the security distance limit of CV-QKD. Currently, the majority of CVQR designs relies on the use of noiseless linear amplifiers for entanglement distillation. However, practical noiseless linear amplifiers may reduce communication performances and suffer from low success rates due to the truncation noise produced during the amplification. To solve these problems, we propose an improved CVQR protocol assisted by mode multiplexing and thermal noises. The results show the advantage of our protocol: at 100 km, the success probability of our protocol is 0.4330, while that of the original protocol is 0.1390; the key rate under the collective attack is 0.0208 bits/pulse in our protocol, while that of the original protocol is 7.624e<span>\\(-\\)</span>06 bits/pulse at 500 km. The CVQR protocol proposed in this work paves the way for long-distance CV-QKD.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A continuous-variable quantum repeater protocol enhanced with multiplexing and thermal noise\",\"authors\":\"Xin Li,&nbsp;Rigui Zhou,&nbsp;Yu Cai,&nbsp;Ruiqing Xu,&nbsp;Chao Gao,&nbsp;Weibo Gao\",\"doi\":\"10.1007/s11128-025-04844-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The continuous-variable quantum repeater (CVQR) plays a crucial role in continuous-variable quantum key distribution (CV-QKD). It can largely extend the security distance limit of CV-QKD. Currently, the majority of CVQR designs relies on the use of noiseless linear amplifiers for entanglement distillation. However, practical noiseless linear amplifiers may reduce communication performances and suffer from low success rates due to the truncation noise produced during the amplification. To solve these problems, we propose an improved CVQR protocol assisted by mode multiplexing and thermal noises. The results show the advantage of our protocol: at 100 km, the success probability of our protocol is 0.4330, while that of the original protocol is 0.1390; the key rate under the collective attack is 0.0208 bits/pulse in our protocol, while that of the original protocol is 7.624e<span>\\\\(-\\\\)</span>06 bits/pulse at 500 km. The CVQR protocol proposed in this work paves the way for long-distance CV-QKD.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 8\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04844-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04844-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

连续变量量子中继器(CVQR)在连续变量量子密钥分发(CV-QKD)中起着关键作用。它可以极大地扩展CV-QKD的安全距离限制。目前,大多数CVQR设计依赖于使用无噪声线性放大器进行纠缠蒸馏。然而,实际的无噪声线性放大器可能会降低通信性能,并且由于放大过程中产生的截断噪声而导致成功率低。为了解决这些问题,我们提出了一种基于模式复用和热噪声的改进CVQR协议。结果表明:在100 km处,我们协议的成功率为0.4330,而原始协议的成功率为0.1390;我们的协议在集体攻击下的密钥速率为0.0208比特/脉冲,而原协议在500公里处的密钥速率为7.624e \(-\) 06比特/脉冲。本文提出的CVQR协议为远距离CV-QKD的实现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A continuous-variable quantum repeater protocol enhanced with multiplexing and thermal noise

The continuous-variable quantum repeater (CVQR) plays a crucial role in continuous-variable quantum key distribution (CV-QKD). It can largely extend the security distance limit of CV-QKD. Currently, the majority of CVQR designs relies on the use of noiseless linear amplifiers for entanglement distillation. However, practical noiseless linear amplifiers may reduce communication performances and suffer from low success rates due to the truncation noise produced during the amplification. To solve these problems, we propose an improved CVQR protocol assisted by mode multiplexing and thermal noises. The results show the advantage of our protocol: at 100 km, the success probability of our protocol is 0.4330, while that of the original protocol is 0.1390; the key rate under the collective attack is 0.0208 bits/pulse in our protocol, while that of the original protocol is 7.624e\(-\)06 bits/pulse at 500 km. The CVQR protocol proposed in this work paves the way for long-distance CV-QKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信