高等类元、高等量子及其对应关系

IF 0.5 4区 数学 Q3 MATHEMATICS
Cameron Calk, Philippe Malbos, Damien Pous, Georg Struth
{"title":"高等类元、高等量子及其对应关系","authors":"Cameron Calk,&nbsp;Philippe Malbos,&nbsp;Damien Pous,&nbsp;Georg Struth","doi":"10.1007/s10485-025-09817-z","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce <span>\\(\\omega \\)</span>-catoids as generalisations of (strict) <span>\\(\\omega \\)</span>-categories and in particular the higher path categories generated by computads or polygraphs in higher-dimensional rewriting. We also introduce <span>\\(\\omega \\)</span>-quantales that generalise the <span>\\(\\omega \\)</span>-Kleene algebras recently proposed for algebraic coherence proofs in higher-dimensional rewriting. We then establish correspondences between <span>\\(\\omega \\)</span>-catoids and convolution <span>\\(\\omega \\)</span>-quantales. These are related to Jónsson-Tarski-style dualisms between relational structures and lattices with operators. We extend these correspondences to <span>\\((\\omega,p)\\)</span>-catoids, catoids with a groupoid structure above some dimension, and convolution <span>\\((\\omega,p)\\)</span>-quantales, using Dedekind quantales above some dimension to capture homotopic constructions and proofs in higher-dimensional rewriting. We also specialise them to finitely decomposable <span>\\((\\omega, p)\\)</span>-catoids, an appropriate setting for defining <span>\\((\\omega, p)\\)</span>-semirings and <span>\\((\\omega, p)\\)</span>-Kleene algebras. These constructions support the systematic development and justification of <span>\\(\\omega \\)</span>-Kleene algebra and <span>\\(\\omega \\)</span>-quantale axioms, improving on the recent approach mentioned, where axioms for <span>\\(\\omega \\)</span>-Kleene algebras have been introduced in an ad hoc fashion.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-025-09817-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Higher Catoids, Higher Quantales and their Correspondences\",\"authors\":\"Cameron Calk,&nbsp;Philippe Malbos,&nbsp;Damien Pous,&nbsp;Georg Struth\",\"doi\":\"10.1007/s10485-025-09817-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce <span>\\\\(\\\\omega \\\\)</span>-catoids as generalisations of (strict) <span>\\\\(\\\\omega \\\\)</span>-categories and in particular the higher path categories generated by computads or polygraphs in higher-dimensional rewriting. We also introduce <span>\\\\(\\\\omega \\\\)</span>-quantales that generalise the <span>\\\\(\\\\omega \\\\)</span>-Kleene algebras recently proposed for algebraic coherence proofs in higher-dimensional rewriting. We then establish correspondences between <span>\\\\(\\\\omega \\\\)</span>-catoids and convolution <span>\\\\(\\\\omega \\\\)</span>-quantales. These are related to Jónsson-Tarski-style dualisms between relational structures and lattices with operators. We extend these correspondences to <span>\\\\((\\\\omega,p)\\\\)</span>-catoids, catoids with a groupoid structure above some dimension, and convolution <span>\\\\((\\\\omega,p)\\\\)</span>-quantales, using Dedekind quantales above some dimension to capture homotopic constructions and proofs in higher-dimensional rewriting. We also specialise them to finitely decomposable <span>\\\\((\\\\omega, p)\\\\)</span>-catoids, an appropriate setting for defining <span>\\\\((\\\\omega, p)\\\\)</span>-semirings and <span>\\\\((\\\\omega, p)\\\\)</span>-Kleene algebras. These constructions support the systematic development and justification of <span>\\\\(\\\\omega \\\\)</span>-Kleene algebra and <span>\\\\(\\\\omega \\\\)</span>-quantale axioms, improving on the recent approach mentioned, where axioms for <span>\\\\(\\\\omega \\\\)</span>-Kleene algebras have been introduced in an ad hoc fashion.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-025-09817-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09817-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09817-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入\(\omega \) -catoids作为(严格的)\(\omega \) -categories的概括,特别是在高维重写中由计算机或测谎仪生成的更高路径类别。我们还引入了\(\omega \) -量子,它们推广了最近提出的用于高维重写中的代数相干证明的\(\omega \) -Kleene代数。然后我们建立\(\omega \) -catoids和卷积\(\omega \) - qutales之间的对应关系。这些都与Jónsson-Tarski-style关系结构和带操作符的格之间的二象性有关。我们将这些对应扩展到\((\omega,p)\) -catoids,具有一定维以上群样结构的catoids,以及卷积\((\omega,p)\) - qutales,使用一定维以上的Dedekind qutales来捕获高维重写中的同伦构造和证明。我们还将它们专门用于有限可分解的\((\omega, p)\) -类,这是定义\((\omega, p)\) -半环和\((\omega, p)\) -Kleene代数的适当设置。这些结构支持\(\omega \) -Kleene代数和\(\omega \) -量子公理的系统发展和证明,改进了最近提到的方法,其中\(\omega \) -Kleene代数的公理已经以特别的方式引入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Catoids, Higher Quantales and their Correspondences

We introduce \(\omega \)-catoids as generalisations of (strict) \(\omega \)-categories and in particular the higher path categories generated by computads or polygraphs in higher-dimensional rewriting. We also introduce \(\omega \)-quantales that generalise the \(\omega \)-Kleene algebras recently proposed for algebraic coherence proofs in higher-dimensional rewriting. We then establish correspondences between \(\omega \)-catoids and convolution \(\omega \)-quantales. These are related to Jónsson-Tarski-style dualisms between relational structures and lattices with operators. We extend these correspondences to \((\omega,p)\)-catoids, catoids with a groupoid structure above some dimension, and convolution \((\omega,p)\)-quantales, using Dedekind quantales above some dimension to capture homotopic constructions and proofs in higher-dimensional rewriting. We also specialise them to finitely decomposable \((\omega, p)\)-catoids, an appropriate setting for defining \((\omega, p)\)-semirings and \((\omega, p)\)-Kleene algebras. These constructions support the systematic development and justification of \(\omega \)-Kleene algebra and \(\omega \)-quantale axioms, improving on the recent approach mentioned, where axioms for \(\omega \)-Kleene algebras have been introduced in an ad hoc fashion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信