{"title":"模态包含逻辑及其变体的公理化","authors":"Aleksi Anttila, Matilda Häggblom, Fan Yang","doi":"10.1007/s00153-024-00957-y","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a complete axiomatization of modal inclusion logic—team-based modal logic extended with inclusion atoms. We review and refine an expressive completeness and normal form theorem for the logic, define a natural deduction proof system, and use the normal form to prove completeness of the axiomatization. Complete axiomatizations are also provided for two other extensions of modal logic with the same expressive power as modal inclusion logic: one augmented with a might operator and the other with a single-world variant of the might operator.\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 5-6","pages":"755 - 793"},"PeriodicalIF":0.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00957-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Axiomatizing modal inclusion logic and its variants\",\"authors\":\"Aleksi Anttila, Matilda Häggblom, Fan Yang\",\"doi\":\"10.1007/s00153-024-00957-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a complete axiomatization of modal inclusion logic—team-based modal logic extended with inclusion atoms. We review and refine an expressive completeness and normal form theorem for the logic, define a natural deduction proof system, and use the normal form to prove completeness of the axiomatization. Complete axiomatizations are also provided for two other extensions of modal logic with the same expressive power as modal inclusion logic: one augmented with a might operator and the other with a single-world variant of the might operator.\\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"64 5-6\",\"pages\":\"755 - 793\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-024-00957-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-024-00957-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00957-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Axiomatizing modal inclusion logic and its variants
We provide a complete axiomatization of modal inclusion logic—team-based modal logic extended with inclusion atoms. We review and refine an expressive completeness and normal form theorem for the logic, define a natural deduction proof system, and use the normal form to prove completeness of the axiomatization. Complete axiomatizations are also provided for two other extensions of modal logic with the same expressive power as modal inclusion logic: one augmented with a might operator and the other with a single-world variant of the might operator.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.