现代电力企业输电线路的高效无人机巡检与管理

Q2 Energy
Hongzhi Gao, Dekyi Dekyi, Metok Metok
{"title":"现代电力企业输电线路的高效无人机巡检与管理","authors":"Hongzhi Gao,&nbsp;Dekyi Dekyi,&nbsp;Metok Metok","doi":"10.1186/s42162-025-00575-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study intends to address the issues of low recognition accuracy, delayed response, and insufficient efficiency of multi machine collaboration in unmanned aerial vehicle (UAV) inspections of transmission lines in extreme environments. Thus, the study proposes an intelligent operation and inspection framework that integrates multimodal perception, deep reinforcement learning, and dynamic scheduling, which is divided into three stages. In the first stage, this study proposes an UAV hardware system integrating Light Detection and Ranging (LiDAR), infrared thermal imagers, and high-resolution visual sensors to enhance data collection efficiency. In the second stage, this study then presents a Transformer-based multimodal data fusion algorithm to improve defect recognition accuracy and robustness. It also uses a deep reinforcement learning algorithm for dynamic path planning to optimize UAV inspection routes, thereby enhancing inspection coverage and energy efficiency. In the third stage, a dynamic task allocation and resource scheduling model combining Mixed Integer Programming (MIP) and heuristic rules is proposed to achieve real-time task allocation and resource optimization for multi-UAV collaborative inspection. Experimental results show that this method achieves an F1-score of 89.8% for defect recognition in extreme environments (improved by 11% compared with TransPathNet), shortens emergency response time to 45 s (improved by 28.6% compared with PPO-MultiDrone (Proximal Policy Optimization-Multi-Drone)), increases inspection coverage to 98.7% (improved by 10.7% compared with PPO-MultiDrone), reduces energy consumption by 28.4%, and achieves task completion rate and resource utilization rate of 95.6% and 91.5% respectively (Improved by 8.4% and 16.0% respectively compared to the optimal baseline Genetic Algorithm-Mask Region-based Convolutional Neural Network). This study provides a reference method for the further development of power Internet of Things defect detection.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00575-9","citationCount":"0","resultStr":"{\"title\":\"Efficient unmanned aerial vehicle inspection and management of transmission lines in modern electric power enterprises\",\"authors\":\"Hongzhi Gao,&nbsp;Dekyi Dekyi,&nbsp;Metok Metok\",\"doi\":\"10.1186/s42162-025-00575-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study intends to address the issues of low recognition accuracy, delayed response, and insufficient efficiency of multi machine collaboration in unmanned aerial vehicle (UAV) inspections of transmission lines in extreme environments. Thus, the study proposes an intelligent operation and inspection framework that integrates multimodal perception, deep reinforcement learning, and dynamic scheduling, which is divided into three stages. In the first stage, this study proposes an UAV hardware system integrating Light Detection and Ranging (LiDAR), infrared thermal imagers, and high-resolution visual sensors to enhance data collection efficiency. In the second stage, this study then presents a Transformer-based multimodal data fusion algorithm to improve defect recognition accuracy and robustness. It also uses a deep reinforcement learning algorithm for dynamic path planning to optimize UAV inspection routes, thereby enhancing inspection coverage and energy efficiency. In the third stage, a dynamic task allocation and resource scheduling model combining Mixed Integer Programming (MIP) and heuristic rules is proposed to achieve real-time task allocation and resource optimization for multi-UAV collaborative inspection. Experimental results show that this method achieves an F1-score of 89.8% for defect recognition in extreme environments (improved by 11% compared with TransPathNet), shortens emergency response time to 45 s (improved by 28.6% compared with PPO-MultiDrone (Proximal Policy Optimization-Multi-Drone)), increases inspection coverage to 98.7% (improved by 10.7% compared with PPO-MultiDrone), reduces energy consumption by 28.4%, and achieves task completion rate and resource utilization rate of 95.6% and 91.5% respectively (Improved by 8.4% and 16.0% respectively compared to the optimal baseline Genetic Algorithm-Mask Region-based Convolutional Neural Network). This study provides a reference method for the further development of power Internet of Things defect detection.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00575-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00575-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00575-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

针对极端环境下无人机对输电线路检测中存在的识别精度低、响应滞后、多机协同工作效率低等问题,开展了研究。为此,本研究提出了一个集多模态感知、深度强化学习和动态调度于一体的智能运检框架,该框架分为三个阶段。在第一阶段,本研究提出了一种集成光探测与测距(LiDAR)、红外热成像仪和高分辨率视觉传感器的无人机硬件系统,以提高数据采集效率。在第二阶段,本文提出了一种基于transformer的多模态数据融合算法,以提高缺陷识别的准确性和鲁棒性。采用深度强化学习算法进行动态路径规划,优化无人机巡检路线,提高巡检覆盖率和能效。第三阶段,提出了混合整数规划(MIP)和启发式规则相结合的动态任务分配和资源调度模型,实现多无人机协同巡检的实时任务分配和资源优化。实验结果表明,该方法在极端环境下缺陷识别的f1得分为89.8%(与TransPathNet相比提高了11%),将应急响应时间缩短至45 s(与PPO-MultiDrone (Proximal Policy Optimization-Multi-Drone)相比提高了28.6%),将检测覆盖率提高至98.7%(与PPO-MultiDrone相比提高了10.7%),降低了28.4%的能耗。任务完成率和资源利用率分别达到95.6%和91.5%(较最优基线遗传算法- mask区域卷积神经网络分别提高8.4%和16.0%)。本研究为电力物联网缺陷检测的进一步发展提供了参考方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient unmanned aerial vehicle inspection and management of transmission lines in modern electric power enterprises

This study intends to address the issues of low recognition accuracy, delayed response, and insufficient efficiency of multi machine collaboration in unmanned aerial vehicle (UAV) inspections of transmission lines in extreme environments. Thus, the study proposes an intelligent operation and inspection framework that integrates multimodal perception, deep reinforcement learning, and dynamic scheduling, which is divided into three stages. In the first stage, this study proposes an UAV hardware system integrating Light Detection and Ranging (LiDAR), infrared thermal imagers, and high-resolution visual sensors to enhance data collection efficiency. In the second stage, this study then presents a Transformer-based multimodal data fusion algorithm to improve defect recognition accuracy and robustness. It also uses a deep reinforcement learning algorithm for dynamic path planning to optimize UAV inspection routes, thereby enhancing inspection coverage and energy efficiency. In the third stage, a dynamic task allocation and resource scheduling model combining Mixed Integer Programming (MIP) and heuristic rules is proposed to achieve real-time task allocation and resource optimization for multi-UAV collaborative inspection. Experimental results show that this method achieves an F1-score of 89.8% for defect recognition in extreme environments (improved by 11% compared with TransPathNet), shortens emergency response time to 45 s (improved by 28.6% compared with PPO-MultiDrone (Proximal Policy Optimization-Multi-Drone)), increases inspection coverage to 98.7% (improved by 10.7% compared with PPO-MultiDrone), reduces energy consumption by 28.4%, and achieves task completion rate and resource utilization rate of 95.6% and 91.5% respectively (Improved by 8.4% and 16.0% respectively compared to the optimal baseline Genetic Algorithm-Mask Region-based Convolutional Neural Network). This study provides a reference method for the further development of power Internet of Things defect detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信