铝/镀锌钢高速率冲击焊接:界面形成及效果

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Zhenghua Meng, Jiamin Guo, Zhixin Luo, Wei Liu, Tie Xu
{"title":"铝/镀锌钢高速率冲击焊接:界面形成及效果","authors":"Zhenghua Meng,&nbsp;Jiamin Guo,&nbsp;Zhixin Luo,&nbsp;Wei Liu,&nbsp;Tie Xu","doi":"10.1007/s12289-025-01921-8","DOIUrl":null,"url":null,"abstract":"<div><p>Galvanized steel has been widely used in industrial fields such as automobiles, ships, and household appliances. Due to its anti-corrosion properties, galvanized steel samples have lower corrosion rates and toughness losses. Therefore, using galvanized steel sheets is an effective way to improve the quality of welded joints. Nowadays aluminum alloy is gradually replacing steel as the raw material for industrial products due to its lightweight and corrosion-resistant properties, aluminum alloys have disadvantages in terms of cost and mechanical properties. Multi-material structures in industrial products (especially in automotive components) to fully utilize the advantages of steel and aluminum alloys. There are many ways to achieve steel/aluminum dissimilar metal connections. Due to the high welding temperature and poor welding environment, a high volume fraction of Al-Fe-Si intermetallic compounds precipitates at the welding interface, resulting in higher hardness at the welded joint and strong local corrosion. High-speed impact welding can effectively avoid these problems. At low welding temperature and high impact speed, minimal metal melting occurs at the interface while the base material deforms in solid state, forming a characteristic wavy bond morphology. Therefore, the coating will affect the morphology and component content of the welding interface during the impact joining process. In this paper, the effects of Zn coating on the welding interface will be investigated and the joint interface formation process will be clarified by using a method that combines numerical simulation and experiment, in order to instruct the processing design.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High rate impact welding of aluminum/galvanized steel: interface formation and effects\",\"authors\":\"Zhenghua Meng,&nbsp;Jiamin Guo,&nbsp;Zhixin Luo,&nbsp;Wei Liu,&nbsp;Tie Xu\",\"doi\":\"10.1007/s12289-025-01921-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Galvanized steel has been widely used in industrial fields such as automobiles, ships, and household appliances. Due to its anti-corrosion properties, galvanized steel samples have lower corrosion rates and toughness losses. Therefore, using galvanized steel sheets is an effective way to improve the quality of welded joints. Nowadays aluminum alloy is gradually replacing steel as the raw material for industrial products due to its lightweight and corrosion-resistant properties, aluminum alloys have disadvantages in terms of cost and mechanical properties. Multi-material structures in industrial products (especially in automotive components) to fully utilize the advantages of steel and aluminum alloys. There are many ways to achieve steel/aluminum dissimilar metal connections. Due to the high welding temperature and poor welding environment, a high volume fraction of Al-Fe-Si intermetallic compounds precipitates at the welding interface, resulting in higher hardness at the welded joint and strong local corrosion. High-speed impact welding can effectively avoid these problems. At low welding temperature and high impact speed, minimal metal melting occurs at the interface while the base material deforms in solid state, forming a characteristic wavy bond morphology. Therefore, the coating will affect the morphology and component content of the welding interface during the impact joining process. In this paper, the effects of Zn coating on the welding interface will be investigated and the joint interface formation process will be clarified by using a method that combines numerical simulation and experiment, in order to instruct the processing design.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01921-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01921-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

镀锌钢已广泛应用于汽车、船舶、家电等工业领域。由于其抗腐蚀性能,镀锌钢样品具有较低的腐蚀速率和韧性损失。因此,采用镀锌钢板是提高焊接接头质量的有效途径。目前,铝合金以其轻质、耐腐蚀的性能逐渐取代钢成为工业产品的原材料,但铝合金在成本和力学性能方面存在劣势。多材料结构在工业产品(特别是汽车零部件)中充分利用钢和铝合金的优点。实现钢/铝异种金属连接的方法有很多。由于焊接温度高,焊接环境差,在焊接界面处析出体积分数高的Al-Fe-Si金属间化合物,导致焊接接头处硬度高,局部腐蚀强。高速冲击焊接可以有效地避免这些问题。在低焊接温度和高冲击速度下,基材以固态变形,界面处金属熔化最小,形成典型的波状粘结形态。因此,在冲击连接过程中,涂层会影响焊接界面的形貌和成分含量。本文将采用数值模拟与实验相结合的方法,研究Zn涂层对焊接界面的影响,明确接头界面的形成过程,以指导工艺设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High rate impact welding of aluminum/galvanized steel: interface formation and effects

Galvanized steel has been widely used in industrial fields such as automobiles, ships, and household appliances. Due to its anti-corrosion properties, galvanized steel samples have lower corrosion rates and toughness losses. Therefore, using galvanized steel sheets is an effective way to improve the quality of welded joints. Nowadays aluminum alloy is gradually replacing steel as the raw material for industrial products due to its lightweight and corrosion-resistant properties, aluminum alloys have disadvantages in terms of cost and mechanical properties. Multi-material structures in industrial products (especially in automotive components) to fully utilize the advantages of steel and aluminum alloys. There are many ways to achieve steel/aluminum dissimilar metal connections. Due to the high welding temperature and poor welding environment, a high volume fraction of Al-Fe-Si intermetallic compounds precipitates at the welding interface, resulting in higher hardness at the welded joint and strong local corrosion. High-speed impact welding can effectively avoid these problems. At low welding temperature and high impact speed, minimal metal melting occurs at the interface while the base material deforms in solid state, forming a characteristic wavy bond morphology. Therefore, the coating will affect the morphology and component content of the welding interface during the impact joining process. In this paper, the effects of Zn coating on the welding interface will be investigated and the joint interface formation process will be clarified by using a method that combines numerical simulation and experiment, in order to instruct the processing design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信